forked from rwth-i6/returnn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTFDataPipeline.py
814 lines (706 loc) · 31.4 KB
/
TFDataPipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
"""
TensorFlow data pipeline
========================
This module covers all related code to handle the data loading, preprocessing, chunking, batching
and related things in TensorFlow, i.e. the TensorFlow data pipeline from the Dataset.
Some related documents:
https://github.com/rwth-i6/returnn/issues/292 (new dataset pipeline)
https://www.tensorflow.org/guide/datasets
https://www.tensorflow.org/versions/r1.12/api_guides/python/threading_and_queues
https://www.tensorflow.org/guide/performance/overview
https://www.tensorflow.org/guide/performance/datasets
https://github.com/tensorflow/docs/tree/r1.10/site/en/api_docs/python/tf/contrib/data
https://github.com/tensorflow/tensorflow/issues/4535
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/data/README.md
https://stackoverflow.com/questions/41187745/tensorflow-how-can-i-evaluate-a-validation-data-queue
Data shuffling
--------------
#. The sequence shuffling is implemented as part of the Dataset, although we could
also use a tf.RandomShuffleQueue on sequence level for training.
#. Chunk shuffling can be done with another tf.RandomShuffleQueue for training.
#. Frame shuffling only makes sense for non-recurrent networks.
It also only makes sense if we already did any windowing beforehand.
It also only makes sense in training.
In that case, we could do chunking just with chunk size 1 and chunk step 1,
or maybe chunk size = context window size, and then the frame shuffling is just chunk shuffling,
thus we do not need any separate frame shuffling logic.
Generic pipeline
----------------
#. We initialize the Dataset for some epoch.
The Dataset could shuffle the sequence order based on the epoch.
Then we iterate over the sequences/entries of the dataset (seq_idx),
starting with seq_idx = 0, checking Dataset.is_less_than_num_seqs.
We get the data for each data key (e.g. "data" or "classes") as Numpy arrays
with any shape. They don't need to have the same number of time frames,
although in the common case where we have a frame-wise alignment of class labels, they would have.
In any case, we basically have dict[str,numpy.ndarray], the seq_idx and also a seq_tag.
#. We could implement another sequence shuffling with tf.RandomShuffleQueue in training.
#. We do chunking of the data of each sequence, i.e. selecting chunks of chunk size frames,
iterating over the frames of a sequence with stride = chunk step.
While doing chunking, we could add more context around each chunk (zero padding at the borders) if needed,
e.g. if we use windowing or convolution with padding="valid",
such that the output of the net will match that of the targets.
However, this depends on where the data is used in the network; maybe it is used at multiple points?
#. We can do chunk shuffling with another tf.RandomShuffleQueue in training.
#. We build up batches from the chunks.
First the simple method via feed_dict and placeholders
------------------------------------------------------
This is implemented in :class:`FeedDictDataProvider`.
The input data which (and optionally the targets) can be represented with tf.compat.v1.placeholder
and feed via feed_dict from TFCompat.v1.Session.run which does one train/eval/forward step.
In this case, any preprocessing such as chunking and batching must be done beforehand via Numpy.
This was the initial implementation and is also the standard implementation for the Theano backend.
This is not optimal because the TFCompat.v1.Session.run first has to copy the data from CPU to GPU
and then can do whatever it is supposed to do (e.g. one train step).
So copying and then the calculation is done in serial but it could be done in parallel
with some other method which we will discuss below.
Also the preprocessing could involve some more complex operations which could be slow
with Python + Numpy.
Also the chunk shuffling is more difficult to implement and would be slower compared to a pure TF solution.
Implementation via new tf.dataset API
-------------------------------------
This is planned, but not yet started.
Some use case
-------------
Conv net training. For every sequence, window around every frame for context.
Window must belong together, no unnecessary zero padding should be done introduced by chunking.
Thus, windowing must be done before chunking, or additional zero-padding must be added before chunking.
Then formulated differently: Chunking with step 1, output for a chunk is a single frame.
It also means that the windowing can not be part of the network because we will get only chunks there,
or the windowing makes only sense with padding="valid", otherwise we would get way too much zero-padding
also at the border of every chunk.
The same is true for convolution, pooling and others. I.e. padding in time should always be in "valid" mode.
If we feed in a whole sequence, must return the whole sequence, in recog, forwarding, search or eval.
With padding="valid", the output has less time frames, exactly context-size less frames.
Conv should use padding="valid" anyway to save computation time, and only explicitly pad zeros where needed.
In recog, the input-format is (batch, time + context_size, ...) which is zero-padded by context_size additional frames.
So, have context_size as an additional global option for the network
(could be set explicitly in config, or calculated automatically at construction).
When chunking for such case, we also should have chunks with such zero-paddings so that recog matches.
So, basically, a preprocessing step, before chunking, in both training and recog, is to add
zero-padding of size context_size to the input, then we get the output of the expected size.
It depends on whether the full network is recurrent or not.
"""
from __future__ import print_function
import sys
import typing
try:
# noinspection PyCompatibility
from Queue import Queue
except ImportError:
# noinspection PyCompatibility,PyUnresolvedReferences
from queue import Queue
from threading import Thread, Condition
import numpy
import tensorflow as tf
from Dataset import Dataset, BatchSetGenerator
from TFNetwork import ExternData, Data
import TFCompat
from Util import NumbersDict
from Log import log
class DataProviderBase(object):
"""
Base class which wraps up the logic in this class. See derived classes.
"""
def __init__(self, extern_data, data_keys=None):
"""
:param ExternData extern_data:
:param set(str)|None data_keys:
"""
self.coord = tf.train.Coordinator()
self.extern_data = extern_data
if data_keys is None:
data_keys = extern_data.data.keys()
self.data_keys = sorted(data_keys) # type: typing.List[str]
def start_threads(self, session):
"""
Start threads.
:param TFCompat.v1.Session session:
"""
raise NotImplementedError
def stop_threads(self):
"""
Stop threads.
"""
raise NotImplementedError
def have_more_data(self, session):
"""
It is supposed to return True as long as we want to continue with the current epoch
in the current dataset (train or eval).
This is called from the same thread which runs the main computation graph (e.g. train steps).
:param TFCompat.v1.Session session:
:return: whether the next session.run() can run in the current epoch & dataset
:rtype: bool
"""
raise NotImplementedError
def get_feed_dict(self, single_threaded=False):
"""
Gets the feed dict for TF session run().
Note that this will block if there is nothing in the queue.
The queue gets filled by the other thread, via self.thread_main().
:param bool single_threaded: whether to not use the queue
:returns: We dequeue one batch from the queue and provide the data for all placeholders of our external data.
Additionally, there can be some meta information.
:rtype: dict[tf.Tensor,tf.Tensor],dict[str]
"""
raise NotImplementedError
def have_reached_end(self):
"""
:returns: whether the current dataset says that we reached the end.
:rtype: bool
"""
raise NotImplementedError
def get_dataset_name(self):
"""
:return: current dataset name, e.g. "train" or "dev"
:rtype: str
"""
raise NotImplementedError
def get_complete_frac(self):
"""
:return: by how much we are through the current dataset, number between 0 and 1, for visual feedback
:rtype: float
"""
raise NotImplementedError
class FeedDictDataProvider(DataProviderBase):
"""
This class will fill all the placeholders used for training or forwarding or evaluation etc.
of a `TFNetwork.Network`.
It will run a background thread which reads the data from a dataset and puts it into a queue.
"""
def __init__(self, tf_session, dataset, batches, enforce_min_len1=False, capacity=10, tf_queue=None,
batch_slice=None, **kwargs):
"""
:param TFCompat.v1.Session|TFCompat.v1.InteractiveSession tf_session:
:param Dataset dataset:
:param BatchSetGenerator batches:
:param bool enforce_min_len1:
:param ExternData extern_data:
:param set(str)|None data_keys:
:param int capacity:
:param TFDataQueues|None tf_queue:
:param slice|None batch_slice: select a subset of the batches
"""
super(FeedDictDataProvider, self).__init__(**kwargs)
self.tf_session = tf_session
self.dataset = dataset
self.batches = batches
self.enforce_min_len1 = enforce_min_len1
self.batch_slice = batch_slice
self.state_change_cond = Condition()
self.queue = None # type: typing.Optional[Queue]
self.tf_queue = tf_queue
if not self.tf_queue:
self.queue = Queue(maxsize=capacity)
self.thread = None # type: typing.Optional[Thread]
self.thread_finished = False
self.cur_batch_idx = 0
self.reached_end = False
def start_threads(self, session):
"""
Start the thread.
:param TFCompat.v1.Session session:
"""
thread = Thread(target=self._thread_main, name="DataProvider thread")
thread.daemon = True # Thread will close when parent quits.
thread.start()
self.thread = thread
def stop_threads(self):
"""
Stop the thread.
"""
self.dataset.finish_epoch()
if not self.thread:
return
self.coord.request_stop()
self._flush_all_data()
self.thread.join()
def get_next_batch(self, consider_batch_slice):
"""
This assumes that we have more data, i.e. self.batches.has_more().
:param bool consider_batch_slice:
:returns: batch-data-value-dict or None. if not consider_batch_slice, will never be None
:rtype: dict[str,numpy.ndarray]|None
"""
# See EngineUtil.assign_dev_data() for reference.
cur_batch_idx = self.cur_batch_idx
batch, = self.batches.peek_next_n(1)
self.cur_batch_idx += 1
if consider_batch_slice and self.batch_slice is not None:
assert (self.batch_slice.start or 0) >= 0
start = self.batch_slice.start or 0
assert (self.batch_slice.step or 1) >= 1
step = self.batch_slice.step or 1
if cur_batch_idx < start:
return None
if self.batch_slice.stop is not None and cur_batch_idx >= self.batch_slice.stop:
return None
if step > 1 and (cur_batch_idx - start) % step != 0:
return None
from Dataset import Batch, shapes_for_batches
assert isinstance(batch, Batch)
# In Returnn with Theano, we usually have the shape (time,batch,feature).
# In TensorFlow, the default is (batch,time,feature).
# This is also what we use here, i.e. batch_dim_first=True.
# This must match the Data specification in TFNetwork.ExternData.init_from_config().
shapes = shapes_for_batches(
[batch], data_keys=self.data_keys, extern_data=self.extern_data, enforce_min_len1=self.enforce_min_len1)
data = {k: numpy.zeros(shape=shapes[k], dtype=self.extern_data.data[k].dtype)
for k in self.data_keys if self.extern_data.data[k].dtype != "string"}
# Numpy cannot handle "string" dtype. Just make it a list[str], which is what TF can handle.
data.update({k: [""] * batch.num_slices
for k in self.data_keys if self.extern_data.data[k].dtype == "string"})
data.update({"seq_idx": [-1] * batch.num_slices, "seq_tag": [""] * batch.num_slices})
seq_lens = {k: numpy.zeros(shape=(shapes[k][0],), dtype=self.extern_data.data[k].size_dtype)
for k in self.data_keys if self.extern_data.data[k].have_time_axis()}
self.dataset.load_seqs(batch.start_seq, batch.end_seq)
from Util import slice_pad_zeros
with self.dataset.lock:
for seq in batch.seqs:
o = seq.batch_frame_offset
q = seq.batch_slice
length = seq.frame_length
# input-data, input-index will also be set in this loop. That is data-key "data".
for k in self.data_keys:
# Some special cases first, such as "seq_idx" and "seq_tag".
# See also :func:`TFNetwork.get_extern_data`.
if k in ["seq_idx", "seq_tag"]:
continue # handled below. will always be added
if k in self.extern_data.extra_added_keys:
continue
if self.extern_data.data[k].have_time_axis():
if length.get(k) in [0, None]:
continue
v = self.dataset.get_data(seq.seq_idx, k)
if self.extern_data.data[k].have_time_axis():
v = slice_pad_zeros(v, begin=seq.seq_start_frame[k], end=seq.seq_end_frame[k])
ls = v.shape[0]
if ls != length[k]:
raise Exception("got shape[0]: %i, expected: %i, start/end: %r/%r, seq_idx: %i, seq len: %r" % (
ls, length[k], seq.seq_start_frame, seq.seq_end_frame, seq.seq_idx,
self.dataset.get_seq_length(seq.seq_idx)))
data[k][q, o[k]:o[k] + ls] = v
seq_lens[k][q] = max(seq_lens[k][q], o[k] + ls)
else: # no time-axis
data[k][q] = v
data["seq_idx"][q] = seq.seq_idx
data["seq_tag"][q] = self.dataset.get_tag(seq.seq_idx)
for k in seq_lens.keys():
data["%s_seq_lens" % k] = seq_lens[k]
return data
def _thread_main(self):
try:
import better_exchook
better_exchook.install()
while self.batches.has_more() and not self.coord.should_stop():
enqueue_args = self.get_next_batch(consider_batch_slice=True)
if enqueue_args is not None:
if self.queue:
self.queue.put(enqueue_args)
else:
self.tf_queue.enqueue(tf_session=self.tf_session, data=enqueue_args)
with self.state_change_cond:
self.state_change_cond.notifyAll()
self.batches.advance(1)
self.reached_end = not self.batches.has_more()
except Exception as exc:
print("Exception in DataProvider thread: %r" % exc, file=log.v1)
sys.excepthook(*sys.exc_info())
finally:
with self.state_change_cond:
self.thread_finished = True
self.state_change_cond.notifyAll()
def have_more_data(self, session):
"""
:param TFCompat.v1.Session|None session:
:rtype: bool
:return: when we go through an epoch and finished reading, this will return False
If this returns True, you can definitely read another item from the queue.
Threading safety: This assumes that there is no other consumer thread for the queue.
"""
with self.state_change_cond:
while True:
# First check if there is still data in the queue to be processed.
if self.queue and not self.queue.empty():
return True
if self.tf_queue and self.tf_queue.have_more(self.tf_session):
return True
if self.thread_finished:
return False
if not self.thread.is_alive:
return False
# The thread is alive and working. Wait for a change.
self.state_change_cond.wait()
def _flush_all_data(self):
"""
This is supposed to be called by the consumer thread after a call to coord.request_stop().
The data provider thread (self.thread_main()) could currently block in the queue put if it was full.
"""
while self.have_more_data(None):
if self.queue:
self.queue.get()
else:
raise NotImplementedError
def get_feed_dict(self, single_threaded=False):
"""
Gets the feed dict for TF session run().
Note that this will block if there is nothing in the queue.
The queue gets filled by the other thread, via self.thread_main().
:param bool single_threaded: whether to not use the queue
:returns: we dequeue one batch from the queue and provide it for all placeholders of our external data,
and additionally return some meta information.
:rtype: (dict[tf.Tensor,numpy.ndarray],dict[str])
"""
if self.tf_queue:
return {} # not needed to feed anything, it gets it via the queues
if single_threaded:
assert self.batches.has_more()
assert self.batch_slice is None
output = self.get_next_batch(consider_batch_slice=False)
else:
output = self.queue.get()
assert isinstance(output, dict)
# The data itself.
d = {
self.extern_data.get_data(k).placeholder: output[k]
for k in self.data_keys
if k not in self.extern_data.extra_added_keys}
# And seq lengths info.
for k in self.data_keys:
if k in self.extern_data.extra_added_keys:
continue
data = self.extern_data.get_data(k)
for dim, len_placeholder in data.size_placeholder.items():
if dim == 0: # time-dim
d[len_placeholder] = output["%s_seq_lens" % k]
else:
raise Exception(
"dataset currently does not support variable shape in other dimensions than the first. "
"dim=%i, placeholder=%r" % (dim, len_placeholder))
return d, {"seq_idx": output["seq_idx"], "seq_tag": output["seq_tag"]}
def get_dataset_name(self):
"""
:rtype: str
"""
return self.dataset.name
def have_reached_end(self):
"""
:rtype: bool
"""
return self.reached_end
def get_complete_frac(self):
"""
:rtype: float
"""
return self.batches.completed_frac()
class InputContext(object):
"""
This object will be passed to the dataset pipeline function
(``dataset_pipeline`` in the config)
and provides all relevant information, functions, dataset transformations.
The initial design of this class was discussed here:
https://github.com/rwth-i6/returnn/issues/292
"""
def __init__(self, parent, extern_data, config, dataset_name, returnn_dataset, iterator):
"""
:param DatasetDataProvider parent:
:param ExternData extern_data:
:param Config.Config config:
:param str dataset_name: e.g. "train" or "dev"
:param Dataset returnn_dataset:
:param tensorflow.data.Iterator iterator:
"""
self.parent = parent
self.extern_data = extern_data
self.config = config # TODO do we need that? maybe pass horovod and other context explicitly?
self.dataset_name = dataset_name
self.returnn_dataset = returnn_dataset # TODO this might be unset later (if the dataset lives in a separate proc)
self.iterator = iterator
self.num_dataset_producers = 1
self.num_dataset_consumers = 1
self.horovod_enabled = False
self.horovod_rank = None
self.horovod_size = None
if config.is_true("use_horovod"):
self.horovod_enabled = True
import horovod.tensorflow as hvd
self.horovod_rank = hvd.rank() # rank 0 is the chief
self.horovod_size = hvd.size()
self.num_dataset_consumers = self.horovod_size
raise NotImplementedError # TODO...
self.distributed_tf_enabled = False
if config.is_true("distributed_tf"):
self.distributed_tf_enabled = True
raise NotImplementedError # TODO...
# These will be set after init.
self.final_dataset = None # type: typing.Optional[tf.data.Dataset]
self.final_dataset_init_iterator_op = None # type: typing.Optional[tf.Operation]
def get_returnn_dataset(self, **kwargs):
"""
:return: The RETURNN :class:`Dataset` instances wrapped in a :class:`tf.data.Dataset`.
Note that in distributed TF, this dataset would only be used in the dataset loader worker.
However, in all cases this will return some dataset. You are not allowed to read from it, though.
A follow-up call to :func:`map_producer_to_consumer` will take care of this logic.
:rtype: tensorflow.data.Dataset
"""
assert not kwargs
import os
def generator():
"""
:rtype: dict[str,numpy.ndarray]
"""
assert self.parent.current_dataset_name, "current dataset name not set"
returnn_dataset = self.parent.datasets[self.parent.current_dataset_name]
assert returnn_dataset, "RETURNN dataset not loaded in this proc (pid %i)" % os.getpid()
seq_idx = 0
while returnn_dataset.is_less_than_num_seqs(seq_idx):
self.parent.current_dataset_complete_frac = returnn_dataset.get_complete_frac(seq_idx)
returnn_dataset.load_seqs(seq_idx, seq_idx + 1)
res = {} # type: typing.Dict[str,numpy.ndarray]
for key_ in self.parent.data_keys:
data_ = self.extern_data.data[key_]
value = returnn_dataset.get_data(seq_idx, key_)
res[key_] = value
for axis_wo_b_, dim_ in enumerate(data_.shape):
if dim_ is None: # dynamic length -- need size info for it
size_key_ = "size:%s:%i" % (key_, axis_wo_b_)
res[size_key_] = value.shape[axis_wo_b_]
yield res
seq_idx += 1
returnn_dataset.finish_epoch()
output_types = {} # type: typing.Dict[str,tf.DType]
output_shapes = {} # type: typing.Dict[str,tf.TensorShape]
for key, data in self.extern_data.data.items():
output_types[key] = tf.as_dtype(data.dtype)
output_shapes[key] = tf.TensorShape(data.shape) # not batch-shape
for axis_wo_b, dim in enumerate(data.shape):
if dim is None: # dynamic length -- need size info for it
size_key = "size:%s:%i" % (key, axis_wo_b)
output_types[size_key] = tf.as_dtype(data.size_dtype)
output_shapes[size_key] = tf.TensorShape([]) # scalar. will get batched later
return tf.data.Dataset.from_generator(
generator=generator,
output_types=output_types,
output_shapes=output_shapes)
def get_default_max_seqs(self):
"""
:return: batch size in number of seqs, used e.g. for padded_batch
:rtype: int
"""
assert self.config.has("max_seqs") and self.config.int("max_seqs", 0) > 0
return self.config.int("max_seqs", 0)
def padded_batch_dataset(self, dataset, drop_remainder=False):
"""
:param tensorflow.data.Dataset dataset:
:param bool drop_remainder: if True, we would have a static batch size
:rtype: tensorflow.data.Dataset
"""
# We could also use bucket_by_sequence_length.
return dataset.padded_batch(
batch_size=self.get_default_max_seqs(),
padded_shapes=tf.compat.v1.data.get_output_shapes(dataset),
drop_remainder=drop_remainder)
def map_producer_to_consumer(self, dataset):
"""
:param tensorflow.data.Dataset dataset:
:rtype: tensorflow.data.Dataset
"""
if self.horovod_enabled:
raise NotImplementedError # TODO
if self.distributed_tf_enabled:
raise NotImplementedError # TODO
# Otherwise this is a no-op.
return dataset
# noinspection PyMethodMayBeStatic
def get_consumer_device(self):
"""
:return: e.g. "/device:GPU:0"
:rtype: str
"""
# TODO this is probably incomplete
import TFUtil
if TFUtil.is_gpu_available():
return "/device:GPU:0"
return "/device:CPU:0"
def prefetch_to_consumer_device(self, dataset):
"""
This must be called on the consumer (trainer) worker,
i.e. after :func:`map_producer_to_consumer`.
:param tensorflow.data.Dataset dataset:
:rtype: tensorflow.data.Dataset
"""
from tensorflow.python.data.experimental import prefetch_to_device
return prefetch_to_device(self.get_consumer_device())(dataset)
def get_dataset_name(self):
"""
:return: e.g. "train" or "dev"
:rtype: str
"""
return self.dataset_name
def make_iterator_initializer(self, iterator):
"""
:param tensorflow.data.Iterator iterator:
:rtype: tf.Operation
"""
assert self.final_dataset
return iterator.make_initializer(self.final_dataset)
class DatasetDataProvider(DataProviderBase):
"""
Use a :class:`tf.data.Dataset` as input.
This will be used if ``dataset_pipeline`` is set in the config.
See the discussion about the new dataset pipeline (https://github.com/rwth-i6/returnn/issues/292).
Note that this has also a state: the current active dataset.
"""
def __init__(self, extern_data, config, datasets=None):
"""
:param ExternData extern_data:
:param list[str]|dict[str,Dataset|None]|None datasets: e.g. ["train", "dev"]
:param Config.Config config:
"""
super(DatasetDataProvider, self).__init__(extern_data=extern_data)
output_types = {} # type: typing.Dict[str,tf.DType]
output_shapes = {} # type: typing.Dict[str,tf.TensorShape]
for key, data in extern_data.data.items():
output_types[key] = tf.as_dtype(data.dtype)
output_shapes[key] = tf.TensorShape(data.batch_shape)
for axis_wo_b, dim in enumerate(data.shape):
if dim is None: # dynamic length -- need size info for it
size_key = "size:%s:%i" % (key, axis_wo_b)
output_types[size_key] = tf.as_dtype(data.size_dtype)
output_shapes[size_key] = tf.TensorShape([None]) # [Batch]
self.iterator = TFCompat.v1.data.Iterator.from_structure(output_types=output_types, output_shapes=output_shapes)
self.iterator_next_element = self.iterator.get_next()
for key, data in extern_data.data.items():
assert data.placeholder is None
assert not data.size_placeholder
data.placeholder = self.iterator_next_element[key]
assert isinstance(data.placeholder, tf.Tensor), "next: %r" % (self.iterator_next_element,)
data.size_placeholder = {}
for axis_wo_b, dim in enumerate(data.shape):
if dim is None: # dynamic length
size_key = "size:%s:%i" % (key, axis_wo_b)
data.size_placeholder[axis_wo_b] = self.iterator_next_element[size_key]
assert isinstance(data.size_placeholder[axis_wo_b], tf.Tensor), "next: %r" % (self.iterator_next_element,)
dataset_pipeline_func = config.typed_value("dataset_pipeline")
if dataset_pipeline_func in [None, True, 1]: # allow None here, if this class is used explicitly
dataset_pipeline_func = self._dataset_pipeline_default
assert callable(dataset_pipeline_func), "dataset_pipeline in config is invalid"
if datasets is None or not datasets: # e.g. in distributed TF
# We don't use them here. These will be used by the dataset loader producer workers.
datasets = []
if config.is_true("train"):
datasets.append("train")
if config.is_true("dev"):
datasets.append("dev")
if config.is_true("eval"):
datasets.append("eval")
if config.has("eval_datasets"):
datasets.append(sorted(config.typed_value("eval_datasets", {}).keys()))
if isinstance(datasets, (list, tuple)):
datasets = {name: None for name in datasets}
self.datasets = datasets # type: typing.Dict[str,typing.Optional[Dataset]]
self.contexts = {} # type: typing.Dict[str,InputContext]
for dataset_name, returnn_dataset in datasets.items():
context = InputContext(
dataset_name=dataset_name, returnn_dataset=returnn_dataset,
iterator=self.iterator,
config=config, parent=self, extern_data=extern_data)
dataset = dataset_pipeline_func(context)
assert isinstance(dataset, tf.data.Dataset)
context.final_dataset = dataset
context.final_dataset_init_iterator_op = context.make_iterator_initializer(self.iterator)
self.contexts[dataset_name] = context
self.current_dataset_reached_end = False
self.current_dataset_complete_frac = 0.
self.current_dataset_name = None # type: typing.Optional[str]
def set_current_dataset(self, dataset_name):
"""
:param str dataset_name:
"""
assert dataset_name in self.contexts
self.current_dataset_name = dataset_name
self.current_dataset_complete_frac = 0.
self.current_dataset_reached_end = False
def start_threads(self, session):
"""
Start background threads.
Currently this wil not actually start the background threads.
All/any background threads of tf.data are started automatically when needed.
However, this will initialize the TF dataset iterator.
:param TFCompat.v1.Session session:
"""
assert self.current_dataset_name
init_op = self.contexts[self.current_dataset_name].final_dataset_init_iterator_op
session.run(init_op)
# TODO actually it might be nice to start them explicitly in advance...
# I think this is currently not possible though.
# With a custom final prefetcher (see comment in have_more_data), this would be possible.
def stop_threads(self):
"""
Stop background threads (e.g. prefetching).
(Currently a no-op.)
"""
# I don't think this is currently possible. See e.g.:
# https://stackoverflow.com/questions/62148052/how-to-stop-background-thread-of-prefetchdataset
# Anyway, maybe not relevant.
# We just should make sure that any access on the RETURNN dataset is save.
def have_more_data(self, session):
"""
:param TFCompat.v1.Session session:
:return: whether the next session.run() can run in the current epoch & dataset
:rtype: bool
"""
# we will just raise tf.errors.OutOfRangeError otherwise
# TODO: horovod sync on this is likely broken then...
# TODO we could also have sth like an own custom PrefetchDataset in between,
# which runs a background thread which always prefetches elements,
# and an extra function to check whether we reached the end
# (would block if not the case, and not prefetched yet).
# See also have_reached_end.
assert self.current_dataset_name
return True
def get_feed_dict(self, single_threaded=False):
"""
:param bool single_threaded: whether to not use the queue (arg name is slightly misleading)
:returns: batch,meta
:rtype: dict[tf.Tensor,tf.Tensor],dict[str]
"""
assert self.current_dataset_name
assert not single_threaded
return {}, {}
def have_reached_end(self):
"""
:rtype: bool
"""
# If the last read on the iterator raised OutOfRange, this should return True.
# In addition, we could check the dataset itself (might need IPC if it lives in another process...).
assert self.current_dataset_name
return self.current_dataset_reached_end
def get_dataset_name(self):
"""
:return: current dataset name, e.g. "train" or "dev"
:rtype: str
"""
assert self.current_dataset_name
return self.current_dataset_name
def get_complete_frac(self):
"""
:return: by how much we are through the current dataset, number between 0 and 1, for visual feedback
:rtype: float
"""
# TODO ... this is somewhat tricky...
# we would need some IPC to the original RETURNN dataset if it lives in another process...
# we could also feed complete_frac as part of the data itself...
# self.current_dataset_complete_frac can be set if the dataset lives in the same process
return self.current_dataset_complete_frac
# noinspection PyMethodMayBeStatic
def _dataset_pipeline_default(self, context):
"""
:param InputContext context:
:rtype: tensorflow.data.Dataset
"""
dataset = context.get_returnn_dataset()
dataset = context.padded_batch_dataset(dataset)
dataset = context.map_producer_to_consumer(dataset)
dataset = context.prefetch_to_consumer_device(dataset)
return dataset