forked from KoDohwan/VT-TWINS
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
38 lines (30 loc) · 1.4 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import math
import torch
import torch.distributed as dist
from torch.optim.lr_scheduler import LambdaLR
class AllGather(torch.autograd.Function):
"""An autograd function that performs allgather on a tensor."""
@staticmethod
def forward(ctx, tensor, args):
output = [torch.empty_like(tensor) for _ in range(args.world_size)]
dist.all_gather(output, tensor)
ctx.rank = args.rank
ctx.batch_size = tensor.shape[0]
return torch.cat(output, 0)
@staticmethod
def backward(ctx, grad_output):
return (
grad_output[ctx.batch_size * ctx.rank : ctx.batch_size * (ctx.rank + 1)],
None,
)
def get_cosine_schedule_with_warmup(optimizer, num_warmup_steps, num_training_steps, num_cycles=0.5, last_epoch=-1):
""" Create a schedule with a learning rate that decreases following the
values of the cosine function between 0 and `pi * cycles` after a warmup
period during which it increases linearly between 0 and 1.
"""
def lr_lambda(current_step):
if current_step < num_warmup_steps:
return float(current_step) / float(max(1, num_warmup_steps))
progress = float(current_step - num_warmup_steps) / float(max(1, num_training_steps - num_warmup_steps))
return max(0.0, 0.5 * (1.0 + math.cos(math.pi * float(num_cycles) * 2.0 * progress)))
return LambdaLR(optimizer, lr_lambda, last_epoch)