-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
132 lines (113 loc) · 4.84 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import os
import argparse
import torch
import torchvision.datasets as dsets
import torchvision.transforms as transforms
from utils.img_utils import NpyDataset
import datetime
from cm import logger
from cm.script_util import (
ffhq_model_and_ppb_diffusion_defaults,
imagenet_model_and_ppb_diffusion_defaults,
create_model_and_guided_diffusion,
args_to_dict,
add_dict_to_argparser,
)
from cm.train_util import TrainLoop
from utils.tools import random_seed, CenterCropLongEdge, save_mkdirs
def main():
args = create_argparser().parse_args()
random_seed(args.seed)
assert args.global_batch % args.micro_batch == 0
logger.log(f"global_batch: {args.global_batch} / micro batch size {args.micro_batch}")
dataset_name = 'ffhq' if 'ffhq' in args.data_dir else 'imagenet'
args.save_dir = os.path.join(
args.save_dir,
f'{dataset_name}_{args.deg}/gbs{args.global_batch}_bs{args.micro_batch}_lr{args.lr}_slr{args.s_lr}/wc{args.weight_con}-tikl{args.t_ikl}-reg_coeff{args.reg_coeff}-h{args.perturb_h}'
)
save_mkdirs(args.save_dir)
logger.configure(dir=args.save_dir)
logger.log("Current time: {}".format(datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S-%f")))
logger.log("creating model and diffusion...")
if dataset_name == 'ffhq':
model_and_diffusion_defaults = ffhq_model_and_ppb_diffusion_defaults
elif dataset_name == 'imagenet':
model_and_diffusion_defaults = imagenet_model_and_ppb_diffusion_defaults
model_dict = args_to_dict(args, model_and_diffusion_defaults().keys())
model_dict.update(model_and_diffusion_defaults())
model, _ = create_model_and_guided_diffusion(**model_dict) # teacher model
s_model, _ = create_model_and_guided_diffusion(**model_dict) # score function
implicit_model, diffusion = create_model_and_guided_diffusion(**model_dict) # implicit function
logger.log("creating data loader...")
transform_list = transforms.Compose([
CenterCropLongEdge(),
transforms.Resize((args.image_size, args.image_size)),
transforms.ToTensor(),
])
dataset = dsets.ImageFolder(args.data_dir, transform=transform_list)
data = torch.utils.data.DataLoader(dataset, batch_size=args.global_batch, shuffle=True, pin_memory=True, drop_last=False)
y_dir = os.path.join(args.y_dir, f'{dataset_name}_1k_npy/{args.deg}')
y_dataset = NpyDataset(data_dir=os.path.join(y_dir, 'measurement'))
y_data = torch.utils.data.DataLoader(y_dataset, batch_size=args.eval_batch, shuffle=False, pin_memory=True, drop_last=False)
eval_dataset = dsets.ImageFolder(os.path.join(y_dir, 'label'), transform=transform_list)
eval_data = torch.utils.data.DataLoader(eval_dataset, batch_size=args.eval_batch, shuffle=False, pin_memory=True, drop_last=False)
logger.log("Training...")
TrainLoop(
teacher_model=model,
student_model=s_model,
implicit_model=implicit_model,
diffusion=diffusion,
data=data,
y_data=y_data,
eval_data=eval_data,
micro_batch=args.micro_batch,
global_batch=args.global_batch,
deg=args.deg,
lr=args.lr,
s_lr=args.s_lr,
weight_con=args.weight_con,
t_ikl=args.t_ikl,
reg_coeff=args.reg_coeff,
perturb_h=args.perturb_h,
save_dir=args.save_dir,
total_training_steps=args.total_training_steps,
total_training_iters=args.total_training_iters,
test_interval=args.test_interval,
resume_checkpoint=args.resume_checkpoint,
use_fp16=args.use_fp16,
use_wandb=args.use_wandb,
model_path=args.model_path,
dataset_name=dataset_name,
wandb_project=args.wandb_project,
).run_loop()
def create_argparser():
defaults = dict(
y_dir="data/y_npy",
save_dir="results/",
data_dir="data/ffhq_49K",
model_path="model/ffhq_10m.pt",
test_interval=1000,
total_training_steps=100,
total_training_iters=2000000,
global_batch=8,
micro_batch=8,
eval_batch=10,
lr=1e-4,
s_lr=1e-4,
resume_checkpoint=None,
seed=777,
)
defaults.update(ffhq_model_and_ppb_diffusion_defaults())
defaults.update(imagenet_model_and_ppb_diffusion_defaults())
parser = argparse.ArgumentParser()
parser.add_argument('--deg', type=str, default='gaussian')
parser.add_argument('--use_wandb', action='store_true')
parser.add_argument('--wandb_project', type=str, default='DAVI')
parser.add_argument('--weight_con', type=float, default=1)
parser.add_argument('--t_ikl', type=int, default=1000)
parser.add_argument('--perturb_h', type=float, default=0.1)
parser.add_argument('--reg_coeff', type=float, default=0.1)
add_dict_to_argparser(parser, defaults)
return parser
if __name__ == "__main__":
main()