This repository contains MLCommons CM automation recipes to make it easier to prepare and benchmark different versions of ABTF models (public or private) with MLPerf loadgen across different software and hardware.
Import Cognata data set downloaded manually or via CM on the host and exposed to Docker via /cognata
path:
cmr "get raw dataset mlcommons-cognata" --import=/cognata
or download Cognata data set:
cmr "get raw dataset mlcommons-cognata" --path=/cognata
Using full dataset:
cmr "demo abtf ssd-resnet50 cognata pytorch training _cuda" --config=baseline_4MP_ss_all
or partial dataset:
cmr "demo abtf ssd-resnet50 cognata pytorch training _cuda" --config=baseline_4MP_ss_all --dataset_folders=10002_Urban_Clear_Morning --dataset_cameras=Cognata_Camera_01_8M
or on Windows with gloo:
cmr "demo abtf ssd-resnet50 cognata pytorch training _cuda" --config=baseline_4MP_ss_all --torch_distributed_type=gloo --torch_distributed_init="" --dataset_folders=10002_Urban_Clear_Morning --dataset_cameras=Cognata_Camera_01_8M
See related CM script.
cmr "download file _wget" --url="https://www.dropbox.com/scl/fi/ljdnodr4buiqqwo4rgetu/baseline_4MP_ss_all_ep60.pth?rlkey=zukpgfjsxcjvf4obl64e72rf3&st=umfnx8go&dl=0" --verify_ssl=no --md5sum=75e56779443f07c25501b8e43b1b094f
cmr "demo abtf ssd-resnet50 cognata pytorch evaluation _cuda" --config=baseline_4MP_ss_all --pretrained_model=baseline_4MP_ss_all_ep60.pth
Run on partial dataset (just for a test):
cmr "demo abtf ssd-resnet50 cognata pytorch evaluation _cuda" --config=baseline_4MP_ss_all --dataset_folders=10002_Urban_Clear_Morning --dataset_cameras=Cognata_Camera_01_8M --pretrained_model=baseline_4MP_ss_all_ep60.pth --force_cognata_labels=yes
or on Windows:
cmr "demo abtf ssd-resnet50 cognata pytorch evaluation _cuda" --config=baseline_4MP_ss_all --torch_distributed_type=gloo --torch_distributed_init="" --dataset_folders=10002_Urban_Clear_Morning --dataset_cameras=Cognata_Camera_01_8M --pretrained_model=baseline_4MP_ss_all_ep60.pth --force_cognata_labels=yes
See related CM script.
cmr "download file _wget" --url="https://www.dropbox.com/scl/fi/ljdnodr4buiqqwo4rgetu/baseline_4MP_ss_all_ep60.pth?rlkey=zukpgfjsxcjvf4obl64e72rf3&st=umfnx8go&dl=0" --verify_ssl=no --md5sum=75e56779443f07c25501b8e43b1b094f
cmr "demo abtf ssd-resnet50 cognata pytorch test _cuda" --config=baseline_4MP_ss_all --model=baseline_4MP_ss_all_ep60.pth
Run on partial dataset (just for a test):
cmr "demo abtf ssd-resnet50 cognata pytorch test _cuda" --config=baseline_4MP_ss_all --dataset_folders=10002_Urban_Clear_Morning --dataset_cameras=Cognata_Camera_01_8M --pretrained_model=baseline_4MP_ss_all_ep60.pth --force_cognata_labels=yes
or on Windows:
cmr "demo abtf ssd-resnet50 cognata pytorch test _cuda" --config=baseline_4MP_ss_all --dataset_folders=10002_Urban_Clear_Morning --dataset_cameras=Cognata_Camera_01_8M --pretrained_model=baseline_4MP_ss_all_ep60.pth --force_cognata_labels=yes
See related CM script.