-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest.py
233 lines (187 loc) · 7.2 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
import argparse
import os
import math
from functools import partial
import yaml
import torch
from torch.utils.data import DataLoader
from tqdm import tqdm
import datasets
import models
import utils
import museval
def batched_predict_liif(model, inp, coord, cell, bsize):
with torch.no_grad():
model.gen_feat(inp)
n = coord.shape[1]
ql = 0
preds = []
while ql < n:
qr = min(ql + bsize, n)
pred = model.query_rgb(coord[:, ql: qr, :], cell[:, ql: qr, :])
preds.append(pred)
ql = qr
pred = torch.cat(preds, dim=1)
return pred
def batched_predict_mod_sine(model, coord, bsize, latent=None):
if latent is None:
pass #TODO
else:
with torch.no_grad():
n = coord.shape[1]
ql = 0
preds = []
while ql<n:
qr = min(ql + bsize, n)
mods = model.modulator(latent)
pred = model.net(coord, mods)
preds.append(pred)
ql = qr
pred = torch.cat(preds,dim =1)
return pred
def eval_psnr(loader, model, data_norm=None, eval_type=None, eval_bsize=None,
verbose=False):
model.eval()
if data_norm is None:
data_norm = {
'inp': {'sub': [0], 'div': [1]},
'gt': {'sub': [0], 'div': [1]}
}
t = data_norm['inp']
inp_sub = torch.FloatTensor(t['sub']).view(1, -1, 1, 1).cuda()
inp_div = torch.FloatTensor(t['div']).view(1, -1, 1, 1).cuda()
t = data_norm['gt']
gt_sub = torch.FloatTensor(t['sub']).view(1, 1, -1).cuda()
gt_div = torch.FloatTensor(t['div']).view(1, 1, -1).cuda()
if eval_type is None:
metric_fn = utils.calc_psnr
elif eval_type.startswith('div2k'):
scale = int(eval_type.split('-')[1])
metric_fn = partial(utils.calc_psnr, dataset='div2k', scale=scale)
elif eval_type.startswith('benchmark'):
scale = int(eval_type.split('-')[1])
metric_fn = partial(utils.calc_psnr, dataset='benchmark', scale=scale)
else:
raise NotImplementedError
val_res = utils.Averager()
pbar = tqdm(loader, leave=False, desc='val')
for batch in pbar:
for k, v in batch.items():
batch[k] = v.cuda()
inp = (batch['inp'] - inp_sub) / inp_div
if eval_bsize is None:
with torch.no_grad():
pred = model(latent = latent,coord = batch['coord'])
else:
#pred = batched_predict(model, inp,batch['coord'], batch['cell'], eval_bsize)
pred = batched_predict(model,batch['coord'],latent, eval_bsize)
#pred = pred * gt_div + gt_sub
#pred.clamp_(0, 1)
if eval_type is not None: # reshape for shaving-eval
ih, iw = batch['inp'].shape[-2:]
s = math.sqrt(batch['coord'].shape[1] / (ih * iw))
shape = [batch['inp'].shape[0], round(ih * s), round(iw * s), 3]
pred = pred.view(*shape) \
.permute(0, 3, 1, 2).contiguous()
batch['gt'] = batch['gt'].view(*shape) \
.permute(0, 3, 1, 2).contiguous()
res = metric_fn(pred, batch['gt'])
val_res.add(res.item(), inp.shape[0])
if verbose:
pbar.set_description('val {:.4f}'.format(val_res.item()))
return val_res.item()
def eval_sdr(loader, model, verbose=False,
latent_list=None, optimizer_config=None, loss_fn=None):
model.eval()
val_res = utils.Averager()
optimize_latent = latent_list is None
pbar = tqdm(loader, leave=False, desc='val')
for batch in pbar:
for k, v in batch.items():
batch[k] = v.cuda()
batch_size = batch['inp'].shape[0]
inp = batch['inp'].view(1, batch_size, -1, 1)
if optimize_latent:
if torch.cuda.device_count() > 1:
latent = torch.randn(model.module.latent_dim).cuda()
else:
latent = torch.randn(model.latent_dim).cuda()
else:
latent = latent_list[batch['index'][0]]
if optimize_latent:
optimizer = utils.make_optimizer([latent], optimizer_config)
for i in range(1000):
optimizer.zero_grad()
pred = model(latent = latent, coord = batch['coord'])
loss = loss_fn(pred, batch['gt'])
loss.backward()
optimizer.step()
with torch.no_grad():
pred = model(latent = latent, coord = batch['coord'])
pred.clamp_(-1, 1)
sdr = utils.calc_sdr(pred, batch['gt'])
val_res.add(sdr, inp.shape[0]) # TODO : average for dB
if verbose:
pbar.set_description('val {:.4f}'.format(val_res.item()))
return val_res.item()
def eval_sdr_encoder(loader, model, data_norm=None, eval_type=None, eval_bsize=None,
verbose=False):
model.eval()
if data_norm is None:
data_norm = {
'inp': {'sub': [0], 'div': [1]},
'gt': {'sub': [0], 'div': [1]}
}
t = data_norm['inp']
inp_sub = torch.FloatTensor(t['sub']).view(1, -1, 1, 1).cuda()
inp_div = torch.FloatTensor(t['div']).view(1, -1, 1, 1).cuda()
t = data_norm['gt']
gt_sub = torch.FloatTensor(t['sub']).view(1, 1, -1).cuda()
gt_div = torch.FloatTensor(t['div']).view(1, 1, -1).cuda()
if eval_type is None:
metric_fn = museval.evaluate
else:
raise NotImplementedError
val_res = utils.Averager()
pbar = tqdm(loader, leave=False, desc='val')
for batch in pbar:
for k, v in batch.items():
batch[k] = v.cuda()
batch_size = batch['inp'].shape[0]
inp = batch['inp'].view(1, batch_size, -1, 1)
# inp = (batch['inp'] - inp_sub) / inp_div
with torch.no_grad():
pred = model(inp = batch['inp'], coord = batch['coord'])
pred.clamp_(-1, 1)
try:
res, _, _, _ = metric_fn(batch['gt'].cpu(), pred.cpu())
except ValueError as error:
print("error while calculating sdr: ", error)
val_res.add(0, inp.shape[0])
continue
val_res.add(sum(sum(res)), inp.shape[0]) # TODO
if verbose:
pbar.set_description('val {:.4f}'.format(val_res.item()))
return val_res.item()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--config')
parser.add_argument('--model')
parser.add_argument('--gpu', default='0')
args = parser.parse_args()
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
with open(args.config, 'r') as f:
config = yaml.load(f, Loader=yaml.FullLoader)
spec = config['test_dataset']
dataset = datasets.make(spec['dataset'])
dataset = datasets.make(spec['wrapper'], args={'dataset': dataset})
loader = DataLoader(dataset, batch_size=spec['batch_size'],
num_workers=8, pin_memory=True)
model_spec = torch.load(args.model)['model']
model = models.make(model_spec, load_sd=True).cuda()
res = eval_psnr(loader, model,
data_norm=config.get('data_norm'),
eval_type=config.get('eval_type'),
eval_bsize=config.get('eval_bsize'),
verbose=True)
print('result: {:.4f}'.format(res))