-
Notifications
You must be signed in to change notification settings - Fork 0
/
scapegoat.py
196 lines (169 loc) · 6.18 KB
/
scapegoat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import math
class Node():
def __init__(self, key):
self.key = key
self.left = None
self.right = None
def __repr__(self):
return str(self.key)
class ScapeGoatTree():
def __init__(self, a):
self.a = a
self.size = 0
self.max_size = 0
self.root = None
# Return the number of keys on the subtree rooted by x (including x's key)
def sizeOf(self, x):
if x == None:
return 0
return 1 + self.sizeOf(x.left) + self.sizeOf(x.right)
def haT(self):
return math.floor(math.log(self.size, 1.0/self.a))
# Determine if a specific depth of a node makes the tree "deep"
def isDeep(self, depth):
return depth > self.haT()
# Returns the brother node of "node", whose parent is "parent"
def brotherOf(self, node, parent):
if parent.left != None and parent.left.key == node.key:
return parent.right
return parent.left
# Builds a new binary tree based on an old one. The new tree is balanced
def myRebuildTree(self, root, length):
# Turn a binary tree into a list of nodes in sorted order
def flatten(node, nodes):
if node == None:
return
flatten(node.left, nodes)
nodes.append(node)
flatten(node.right, nodes)
# Build a balanced binary tree for a sort list of nodes
def buildTreeFromSortedList(nodes, start, end):
if start > end:
return None
mid = int(math.ceil(start + (end - start) / 2.0))
node = Node(nodes[mid].key)
#node = nodes[mid]
node.left = buildTreeFromSortedList(nodes, start, mid-1)
node.right = buildTreeFromSortedList(nodes, mid+1, end)
return node
nodes = []
flatten(root, nodes)
return buildTreeFromSortedList(nodes, 0, length-1)
# Returns the node with the minimum key in the subtree rooted by x
def minimum(self, x):
while x.left != None:
x = x.left
return x
# Delete the node in the tree with a value of delete_me
def delete(self, delete_me):
node = self.root
parent = None
is_left_child = True
# find the node, keep track of the parent, and side of the tree
while node.key != delete_me:
parent = node
if delete_me > node.key:
node = node.right
is_left_child = False
else:
node = node.left
is_left_child = True
successor = None
# case 1: Node to be delete has no children
if node.left == None and node.right == None:
pass
# case 2: Node has only a right child
elif node.left == None:
successor = node.right
# case 3: Node has only a left child
elif node.right == None:
successor = node.left
# case 4: Node has right and left child
else:
# find successor
successor = self.minimum(node.right)
# the successor is the node's right child -- easy fix
if successor == node.right:
successor.left = node.left
# complicated case
else:
print("finding successor")
successor.left = node.left
tmp = successor.right
successor.right = node.right
node.right.left = tmp
# Replace the node
if parent == None:
self.root = successor
elif is_left_child:
parent.left = successor
else:
parent.right = successor
self.size -= 1
if self.size < self.a * self.max_size:
#print "Rebuilding the whole tree"
self.root = self.myRebuildTree(self.root, self.size)
self.max_size = self.size
def search(self, key):
x = self.root
while x != None:
if x.key > key:
x = x.left
elif x.key < key:
x = x.right
else:
return x
return None
def insert(self, key):
z = Node(key)
y = None
x = self.root
# keep track of the depth and parents (so we don't have to recalculate
# them)
depth = 0
parents = []
# find where to place the node
while x != None:
parents.insert(0,x)
y = x
if z.key < x.key:
x = x.left
else:
x = x.right
depth += 1
if y == None:
self.root = z
elif z.key < y.key:
y.left = z
else:
y.right = z
self.size += 1
self.max_size = max(self.size, self.max_size)
# Need to do rebuild?
if self.isDeep(depth):
scapegoat = None
parents.insert(0,z)
sizes = [0]*len(parents)
I = 0
# find the highest scapegoat on the tree
for i in range(1, len(parents)):
sizes[i] = sizes[i-1] + self.sizeOf(self.brotherOf(parents[i-1], parents[i])) + 1
if not self.isAWeightBalanced(parents[i], sizes[i]+1):
scapegoat = parents[i]
I = i
#print "When inserting %d Node %d is not weight balanced and could be a scapegoat" % (key, parents[I].key)
tmp = self.myRebuildTree(scapegoat, sizes[I]+1)
scapegoat.left = tmp.left
scapegoat.right = tmp.right
scapegoat.key = tmp.key
def isAWeightBalanced(self, x, size_of_x):
a = self.sizeOf(x.left) <= (self.a * size_of_x)
b = self.sizeOf(x.right) <= (self.a * size_of_x)
return a and b
def preOrder(self, x):
if x != None:
print(x.key)
self.preOrder(x.left)
self.preOrder(x.right)
def printTree(self):
self.preOrder(self.root)