-
-
Notifications
You must be signed in to change notification settings - Fork 2
/
nlateral_demo.cc
500 lines (437 loc) · 15.9 KB
/
nlateral_demo.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
// Copyright 2020 Josh Pieper, [email protected].
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/// @file
///
/// This is a simple application that demonstrates how to efficiently
/// monitor and control multiple moteus servos at a high rate using
/// the pi3hat.
///
/// It is contained in a single file for the purposes of
/// demonstration. A real application should likely be implemented in
/// multiple translation units or structured for longer term
/// maintenance.
#include <sys/mman.h>
#include <chrono>
#include <iomanip>
#include <iostream>
#include <future>
#include <limits>
#include <map>
#include <sstream>
#include <stdexcept>
#include <string>
#include <thread>
#include <vector>
#include "moteus_protocol.h"
#include "pi3hat_moteus_interface.h"
using namespace mjbots;
using MoteusInterface = moteus::Pi3HatMoteusInterface;
namespace {
template <typename Vector, typename KeyGetter>
double Average(const Vector& vector, KeyGetter key_getter) {
double total = 0.0;
double count = 0;
for (const auto& item : vector) {
total += key_getter(item);
count += 1;
}
return total / count;
}
using ServoId = std::pair<int, int>;
std::vector<std::string> Split(const std::string str) {
std::vector<std::string> result;
size_t start = 0;
auto pos = str.find(',');
while (pos != std::string::npos) {
result.push_back(str.substr(start, pos - start + 1));
start = pos + 1;
pos = str.find(',', start);
}
result.push_back(str.substr(start));
return result;
}
struct Servo {
int id = -1;
int bus = 1;
double position_scale = 1.0;
double force_scale = 1.0;
static Servo Parse(const std::string& message) {
auto fields = Split(message);
Servo result;
result.id = std::stol(fields.at(0));
fields.erase(fields.begin());
for (const auto& field : fields) {
if (field.at(0) == 'b') {
result.bus = std::stol(field.substr(1));
} else if (field.at(0) == 'p') {
result.position_scale = std::stod(field.substr(1));
if (std::isfinite(result.position_scale) &&
result.position_scale > 0.25 &&
result.position_scale < 16.0) {
// good
} else {
throw std::runtime_error("Position scale out of range: " + field);
}
} else if (field.at(0) == 'f') {
result.force_scale = std::stod(field.substr(1));
if (std::isfinite(result.force_scale) &&
result.force_scale > 0.25 &&
result.force_scale < 4.0) {
// good
} else {
throw std::runtime_error("Force scale out of range: " + field);
}
} else {
throw std::runtime_error("Unknown option: " + field);
}
}
return result;
}
};
struct Arguments {
Arguments(const std::vector<std::string>& args) {
for (size_t i = 0; i < args.size(); i++) {
const auto& arg = args[i];
if (arg == "-h" || arg == "--help") {
help = true;
} else if (arg == "--main-cpu") {
main_cpu = std::stoull(args.at(++i));
} else if (arg == "--can-cpu") {
can_cpu = std::stoull(args.at(++i));
} else if (arg == "--period-s") {
period_s = std::stod(args.at(++i));
} else if (arg == "-s" || arg == "--servo") {
servos.push_back(Servo::Parse(args.at(++i)));
} else if (arg == "--kp") {
kp = std::stod(args.at(++i));
} else if (arg == "--kd") {
kd = std::stod(args.at(++i));
} else if (arg == "--max-torque") {
max_torque = std::stod(args.at(++i));
} else {
throw std::runtime_error("Unknown argument: " + arg);
}
}
}
bool help = false;
int main_cpu = 1;
int can_cpu = 2;
double period_s = 0.002;
double kp = 0.0;
double kd = 0.0;
double max_torque = 0.3;
std::vector<Servo> servos;
};
void DisplayUsage() {
std::cout << "Usage: nlateral_demo [options]\n";
std::cout << "\n";
std::cout << " -h, --help display this usage message\n";
std::cout << " --main-cpu CPU run main thread on a fixed CPU [default: 1]\n";
std::cout << " --can-cpu CPU run CAN thread on a fixed CPU [default: 2]\n";
std::cout << " --period-s S period to run control\n";
std::cout << " --kp XX.X select kp value\n";
std::cout << " --kd XX.X select kd value\n";
std::cout << " --max-torque XX.X maximum torque to apply to a servo\n";
std::cout << " -s, --servo CFG add one servo to be controlled\n";
std::cout << " CFG=ID[,option]...\n";
std::cout << " bN - pi3hat bus number N (default 1)\n";
std::cout << " pXX.X - scale position by this positive float\n";
std::cout << " fXX.X - scale force by this positive float\n";
std::cout << "\n";
std::cout << "Example w/ two moteus devkit motors on ID 1 and 2:\n";
std::cout << " sudo ./nlateral_demo -s 1 -s 2 --period-s 0.001 --kp 1.0 --kd 0.01\n";
}
void LockMemory() {
// We lock all memory so that we don't end up having to page in
// something later which can take time.
{
const int r = ::mlockall(MCL_CURRENT | MCL_FUTURE);
if (r < 0) {
throw std::runtime_error("Error locking memory");
}
}
}
std::pair<double, double> MinMaxVoltage(
const std::vector<MoteusInterface::ServoReply>& r) {
double rmin = std::numeric_limits<double>::infinity();
double rmax = -std::numeric_limits<double>::infinity();
for (const auto& i : r) {
if (i.result.voltage > rmax) { rmax = i.result.voltage; }
if (i.result.voltage < rmin) { rmin = i.result.voltage; }
}
return std::make_pair(rmin, rmax);
}
/// This holds the user-defined control logic.
class NLateralController {
public:
NLateralController(const Arguments& arguments) : arguments_(arguments) {
for (const auto& servo : arguments.servos) {
servos_[ServoId(servo.id, servo.bus)] = servo;
}
}
double torque(ServoId id) const {
const auto it = torques_.find(id);
if (it == torques_.end()) {
return std::numeric_limits<double>::quiet_NaN();
}
return it->second;
}
/// This is also called before any control begins. @p commands will
/// be pre-populated with an entry for each servo. It can be used
/// to perform one-time initialization like setting the resolution
/// of commands and queries.
void Initialize(std::vector<MoteusInterface::ServoCommand>* commands) {
moteus::PositionResolution res;
res.position = moteus::Resolution::kIgnore;
res.velocity = moteus::Resolution::kIgnore;
res.feedforward_torque = moteus::Resolution::kFloat;
res.kp_scale = moteus::Resolution::kInt8;
res.kd_scale = moteus::Resolution::kInt8;
res.maximum_torque = moteus::Resolution::kIgnore;
res.stop_position = moteus::Resolution::kIgnore;
res.watchdog_timeout = moteus::Resolution::kIgnore;
for (auto& cmd : *commands) {
cmd.resolution = res;
}
}
moteus::QueryResult Get(const std::vector<MoteusInterface::ServoReply>& replies, ServoId id) {
for (const auto& item : replies) {
if (ServoId(item.id, item.bus) == id) { return item.result; }
}
return {};
}
/// This is run at each control cycle. @p status is the most recent
/// status of all servos (note that it is possible for a given
/// servo's result to be omitted on some frames).
///
/// @p output should hold the desired output. It will be
/// pre-populated with the result of the last command cycle, (or
/// Initialize to begin with).
void Run(const std::vector<MoteusInterface::ServoReply>& status,
std::vector<MoteusInterface::ServoCommand>* output) {
cycle_count_++;
// Capture our initial positions.
for (const auto& status_servo : status) {
if (initial_positions_.count(ServoId(status_servo.id, status_servo.bus)) == 0 &&
std::isfinite(status_servo.result.position)) {
initial_positions_[ServoId(status_servo.id, status_servo.bus)] =
status_servo.result.position;
}
}
if (cycle_count_ < 5 && fault_) {
for (auto& cmd : *output) {
cmd.mode = moteus::Mode::kZeroVelocity;
}
return;
}
// For at least 5 cycles, or until we have heard from all servos,
// just command stop.
if (cycle_count_ < 5 ||
initial_positions_.size() != arguments_.servos.size()) {
for (auto& cmd : *output) {
// We start everything with a stopped command to clear faults.
cmd.mode = moteus::Mode::kStopped;
}
return;
}
if (status.size() != arguments_.servos.size()) {
// We don't have data from all servos. Just don't command
// anything this cycle. Hopefully the watchdog timeout will
// keep us from running away.
return;
}
if (cycle_count_ > 5 && !fault_) {
// If any servo reports a fault, we fault all of them.
for (const auto& servo_status : status) {
if (servo_status.result.mode == moteus::Mode::kFault) {
std::cout << "\n\nFault! Servo " << servo_status.id
<< " bus " << servo_status.bus
<< " reports fault " << servo_status.result.fault
<< "\n\n";
fault_ = true;
return;
}
}
}
// The n-lateral control law is to move all servos toward the
// average of their positions and velocities using the
// configured kp/kd constants.
const double average_position = Average(
status,
[&](const auto& s) {
return (s.result.position - initial_positions_.at(ServoId(s.id, s.bus))) *
servos_.at(ServoId(s.id, s.bus)).position_scale;
});
const double average_velocity = Average(
status,
[&](const auto& s) {
return s.result.velocity * servos_.at(ServoId(s.id, s.bus)).position_scale;
});
if (0) {
std::cout << "avg pos: " << average_position << " "
<< "avg_vel: " << average_velocity << " ";
}
for (auto& cmd : *output) {
const auto result = Get(status, ServoId(cmd.id, cmd.bus));
const auto& servo = servos_.at(ServoId(cmd.id, cmd.bus));
const double pos = (result.position -
initial_positions_.at(ServoId(cmd.id, cmd.bus))) * servo.position_scale;
const auto p = -arguments_.kp * (pos - average_position);
const auto d = -arguments_.kd * (result.velocity - average_velocity);
const auto unlimited_torque = (p + d) * servo.force_scale;
const auto torque =
(unlimited_torque < -arguments_.max_torque) ?
-arguments_.max_torque :
(unlimited_torque > arguments_.max_torque) ?
arguments_.max_torque :
unlimited_torque;
cmd.mode = moteus::Mode::kPosition;
cmd.position.feedforward_torque = torque;
cmd.position.kp_scale = 0.0;
cmd.position.kd_scale = 0.0;
torques_[ServoId(cmd.id, cmd.bus)] = torque;
if (0) {
std::cout << cmd.id << "/" << cmd.bus << ":" << torque << " ";
}
}
if (0) {
std::cout << "\n";
}
}
bool fault() const { return fault_; }
private:
const Arguments arguments_;
uint64_t cycle_count_ = 0;
std::map<ServoId, double> initial_positions_;
std::map<ServoId, double> torques_;
std::map<ServoId, Servo> servos_;
bool fault_ = false;
};
template <typename Controller>
void Run(const Arguments& args, Controller* controller) {
if (args.help) {
DisplayUsage();
return;
}
moteus::ConfigureRealtime(args.main_cpu);
MoteusInterface::Options moteus_options;
moteus_options.cpu = args.can_cpu;
MoteusInterface moteus_interface{moteus_options};
std::vector<MoteusInterface::ServoCommand> commands;
for (const auto& servo : args.servos) {
commands.push_back({});
commands.back().id = servo.id;
commands.back().bus = servo.bus;
}
std::vector<MoteusInterface::ServoReply> replies{commands.size()};
std::vector<MoteusInterface::ServoReply> saved_replies;
controller->Initialize(&commands);
MoteusInterface::Data moteus_data;
moteus_data.commands = { commands.data(), commands.size() };
moteus_data.replies = { replies.data(), replies.size() };
std::future<MoteusInterface::Output> can_result;
const auto period =
std::chrono::microseconds(static_cast<int64_t>(args.period_s * 1e6));
auto next_cycle = std::chrono::steady_clock::now() + period;
const auto status_period = std::chrono::milliseconds(100);
auto next_status = next_cycle + status_period;
uint64_t cycle_count = 0;
double total_margin = 0.0;
uint64_t margin_cycles = 0;
// We will run at a fixed cycle time.
while (true) {
cycle_count++;
margin_cycles++;
{
const auto now = std::chrono::steady_clock::now();
if (now > next_status) {
// NOTE: iomanip is not a recommended pattern. We use it here
// simply to not require any external dependencies, like 'fmt'.
const auto volts = MinMaxVoltage(saved_replies);
const std::string modes = [&]() {
std::ostringstream result;
result.precision(4);
result << std::fixed;
for (const auto& item : saved_replies) {
result << item.id << "/"
<< item.bus << "/"
<< static_cast<int>(item.result.mode) << "/"
<< item.result.position << "/"
<< controller->torque(ServoId(item.id, item.bus))
<< " ";
}
return result.str();
}();
std::cout << std::setprecision(6) << std::fixed
<< "Cycles " << cycle_count
<< " margin: " << (total_margin / margin_cycles)
<< std::setprecision(1)
<< " volts: " << volts.first << "/" << volts.second
<< " modes: " << modes
<< " \r";
std::cout.flush();
next_status += status_period;
total_margin = 0;
margin_cycles = 0;
}
int skip_count = 0;
while (now > next_cycle) {
skip_count++;
next_cycle += period;
}
if (skip_count) {
std::cout << "\nSkipped " << skip_count << " cycles\n";
}
}
// Wait for the next control cycle to come up.
{
const auto pre_sleep = std::chrono::steady_clock::now();
std::this_thread::sleep_until(next_cycle);
const auto post_sleep = std::chrono::steady_clock::now();
std::chrono::duration<double> elapsed = post_sleep - pre_sleep;
total_margin += elapsed.count();
}
next_cycle += period;
controller->Run(saved_replies, &commands);
if (can_result.valid()) {
// Now we get the result of our last query and send off our new
// one.
const auto current_values = can_result.get();
// We copy out the results we just got out.
const auto rx_count = current_values.query_result_size;
saved_replies.resize(rx_count);
std::copy(replies.begin(), replies.begin() + rx_count,
saved_replies.begin());
}
// Then we can immediately ask them to be used again.
auto promise = std::make_shared<std::promise<MoteusInterface::Output>>();
moteus_interface.Cycle(
moteus_data,
[promise](const MoteusInterface::Output& output) {
// This is called from an arbitrary thread, so we just set
// the promise value here.
promise->set_value(output);
});
can_result = promise->get_future();
}
}
}
int main(int argc, char** argv) {
Arguments args({argv + 1, argv + argc});
// Lock memory for the whole process.
LockMemory();
NLateralController controller{args};
Run(args, &controller);
return 0;
}