-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtrain.py
115 lines (82 loc) · 4.31 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
import warnings
warnings.filterwarnings("ignore")
import os
import pymongo
import torch
import librosa
import argparse
import datetime
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import torch.utils.data as Data
from torch.optim import lr_scheduler
from neural_loop_combiner.config import settings
from neural_loop_combiner.utils.utils import log_message, load_json
from neural_loop_combiner.config.database import initialize_database
from neural_loop_combiner.models.datasets import MixedDataset, PairDataset, SingleDataset
from neural_loop_combiner.trainer.trainer import Trainer
from neural_loop_combiner.models.models import Skeleton, CNN, SNN
from neural_loop_combiner.models.losses import ContrastiveLoss
def load_dataset(out_dir, data_path):
return load_json(os.path.join(out_dir, data_path))
def load_dataloader(model_type, data_type, neg_type, datasets):
pos_datas = datasets['pos'][data_type]
neg_datas = datasets['neg'][data_type][neg_type]
torch_datasets = MixedDataset(pos_datas, neg_datas) if model_type == 'cnn' else PairDataset(pos_datas, neg_datas)
return Data.DataLoader(dataset=torch_datasets, batch_size=batch_size, shuffle= True if data_type else False == 'train', num_workers=1)
def load_parameters(model_type, lr, batch_size, gpu_num):
model = CNN(Skeleton()) if model_type == 'cnn' else SNN(Skeleton())
loss_fn = nn.BCELoss() if model_type == 'cnn' else ContrastiveLoss()
device = torch.device("cuda:{}".format(gpu_num))
optimizer = optim.Adam(model.parameters(), lr=lr)
scheduler = lr_scheduler.StepLR(optimizer, 8, gamma=0.1, last_epoch=-1)
return model, loss_fn, optimizer, scheduler, device
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Train')
parser.add_argument('--gpu_num' , help='gpu num' , default=2)
parser.add_argument('--lr' , help='lr' , default=settings.LR)
parser.add_argument('--epochs' , help='epochs' , default=settings.EPOCHS)
parser.add_argument('--batch_size' , help='batch size' , default=settings.BATCH_SIZE)
parser.add_argument('--log_interval', help='log interval', default=settings.LOG_INTERVAL)
parser.add_argument('--neg_type' , help='neg type' , default='random')
parser.add_argument('--model_type' , help='model type' , default='cnn')
col_datasets = initialize_database(settings.MONGODB_DATASET_COL)
col_models = initialize_database(settings.MONGODB_MODEL_COL)
datas = col_datasets.find({}).sort('date',pymongo.DESCENDING)[0]
datasets = load_dataset(settings.OUT_DIR, datas['data_path'])
gpu_num = parser.parse_args().gpu_num
log_interval = parser.parse_args().log_interval
neg_type = parser.parse_args().neg_type
if neg_type not in datas['neg_types']:
log_message(f'{neg_type} not exists')
else:
model_type = 'snn' if parser.parse_args().model_type != 'cnn' else parser.parse_args().model_type
lr = parser.parse_args().lr
epochs = parser.parse_args().epochs
batch_size = parser.parse_args().batch_size
model, loss_fn, optimizer, scheduler, device = load_parameters(model_type, lr, batch_size, gpu_num)
train_loader = load_dataloader(model_type, 'train', neg_type, datasets)
val_loader = load_dataloader(model_type, 'val' , neg_type, datasets)
trainer = Trainer(model, train_loader, val_loader, loss_fn, optimizer, scheduler, epochs, device, log_interval)
log_message(f'Start train {model_type} with {neg_type}')
losses_avg, losses_history = trainer.fit()
model_id, model_name = trainer.save_model()
col_models.save({
'model_id' : model_id,
'model_name': model_name,
'dataset_id': datas['date'],
'neg_type' : neg_type,
'model_type': model_type,
'parameters': {
'lr': lr,
'epochs': epochs,
'batch_size': batch_size
},
'losses': {
'avg' : losses_avg,
'history': losses_history
}
})
log_message(f'Finish train {model_type} with {neg_type}')