-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmMain.bas
705 lines (519 loc) · 22.2 KB
/
mMain.bas
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
Attribute VB_Name = "mMain"
Option Explicit
Public Const ExpectedMaxDensity As Single = 64
Attribute ExpectedMaxDensity.VB_VarUserMemId = 1073938433
Public Const INVExpectedMaxDensity As Single = 1 / ExpectedMaxDensity
Public OCTTREE As cOctTree
Attribute OCTTREE.VB_VarUserMemId = 1073938435
'Public SpatialGRID As cSpatialGrid3D
''Public HASH3D As cSpatialHash3D
Public PIChDC As Long
Attribute PIChDC.VB_VarUserMemId = 1073741825
Public WW As Long
Attribute WW.VB_VarUserMemId = 1610809345
Public HH As Long
Attribute HH.VB_VarUserMemId = 1073938435
Public ZZ As Long
Attribute ZZ.VB_VarUserMemId = 1073938436
Public invZZ As Single
Attribute invZZ.VB_VarUserMemId = 1073938437
Public px() As Single
Attribute px.VB_VarUserMemId = 1073741830
Public py() As Single
Attribute py.VB_VarUserMemId = 1610809346
Public pz() As Single
Attribute pz.VB_VarUserMemId = 1073938440
Public vX() As Single
Attribute vX.VB_VarUserMemId = 1073938442
Public vY() As Single
Attribute vY.VB_VarUserMemId = 1073938443
Public vZ() As Single
Attribute vZ.VB_VarUserMemId = 1073938444
Public pvX() As Single
Attribute pvX.VB_VarUserMemId = 1073938445
Public pvY() As Single
Attribute pvY.VB_VarUserMemId = 1073741837
Public pvZ() As Single
Attribute pvZ.VB_VarUserMemId = 1073741838
Public NP As Long
Attribute NP.VB_VarUserMemId = 1073938448
Public DrawPairs As Boolean
Attribute DrawPairs.VB_VarUserMemId = 1610809349
Public DoLOOP As Boolean
Attribute DoLOOP.VB_VarUserMemId = 1073741841
Public Frame As Long
Attribute Frame.VB_VarUserMemId = 1073938451
Public DoSaveFrames As Boolean
Attribute DoSaveFrames.VB_VarUserMemId = 1073938452
Public rndGravity As Boolean
Attribute rndGravity.VB_VarUserMemId = 1610809350
Public DoFaucet1 As Boolean
Attribute DoFaucet1.VB_VarUserMemId = 1073938454
Public DoFaucet2 As Boolean
Attribute DoFaucet2.VB_VarUserMemId = 1073741846
Public COMGravity As Boolean
Attribute COMGravity.VB_VarUserMemId = 1073741847
Public GravScale As Single
Attribute GravScale.VB_VarUserMemId = 1073741848
Public FPS As Single
Attribute FPS.VB_VarUserMemId = 1073741849
Public CNT As Long
Attribute CNT.VB_VarUserMemId = 1073741850
Public OldCNT As Long
Attribute OldCNT.VB_VarUserMemId = 1073741851
Public mTime As Single
Attribute mTime.VB_VarUserMemId = 1073741852
Public OldmTime As Single
Attribute OldmTime.VB_VarUserMemId = 1073938455
Public RenderEvery As Long
Attribute RenderEvery.VB_VarUserMemId = 1073938457
Public H As Single 'smoothing radius
Attribute H.VB_VarUserMemId = 1073741855
Public invH As Single
Attribute invH.VB_VarUserMemId = 1073741856
Public InvH2 As Single
Attribute InvH2.VB_VarUserMemId = 1879244800
Public SQR_Table() As Single
Attribute SQR_Table.VB_VarUserMemId = 1879244836
Public Normalize_Table() As Single
Attribute Normalize_Table.VB_VarUserMemId = 1879244864
Public SmoothKernel_Table() As Single
Attribute SmoothKernel_Table.VB_VarUserMemId = 1073741860
Public InvDensity_Table() As Single
Attribute InvDensity_Table.VB_VarUserMemId = 1073741861
Public Visco_Table() As Single
Attribute Visco_Table.VB_VarUserMemId = 1073741862
Public Const TABLESLength As Single = 2 ^ 14 - 1 ' 2 ^ 14 - 1
Public Const kRestitution As Single = 0.7 ' 0.65 ' 0.65 '0.75 ' 0.75 '0.5 '0.66
Public Const kWallFriction As Single = 0.99 '0.98 '0.996 '0.995
Public Const kFakeDensity As Single = 2 ' 2 '0.3 '2022
Public Const kFakeVel As Single = 0.01 ' 0.005
Public gX As Single 'GRAVITY
Attribute gX.VB_VarUserMemId = 1073741863
Public gY As Single
Attribute gY.VB_VarUserMemId = 1073741864
Public gZ As Single
Attribute gZ.VB_VarUserMemId = 1073741865
Public gTOX As Single
Attribute gTOX.VB_VarUserMemId = 1073741866
Public gTOY As Single
Attribute gTOY.VB_VarUserMemId = 1073741867
Public gTOZ As Single
Attribute gTOZ.VB_VarUserMemId = 1073741868
' SPH ---------------------------------------------------------
Public DT As Single
Attribute DT.VB_VarUserMemId = 1073741869
Public invDT As Single
Attribute invDT.VB_VarUserMemId = 1073741870
Private RestDensity As Single
Attribute RestDensity.VB_VarUserMemId = 1073741871
Private INVRestDensity As Single
Attribute INVRestDensity.VB_VarUserMemId = 1073741872
Private PressureLimit As Single
Attribute PressureLimit.VB_VarUserMemId = 1073741873
Private KAttraction As Single
Attribute KAttraction.VB_VarUserMemId = 1073741874
Private KPressure As Single
Attribute KPressure.VB_VarUserMemId = 1073741875
Private KViscosity As Single
Attribute KViscosity.VB_VarUserMemId = 1610809345
Public Density() As Single
Attribute Density.VB_VarUserMemId = 1610809351
Public Pressure() As Single
Attribute Pressure.VB_VarUserMemId = 1073741878
Public Phase() As Long
Attribute Phase.VB_VarUserMemId = 1073741879
Public INVDensity() As Single
Attribute INVDensity.VB_VarUserMemId = 1073741880
Public VXChange() As Single
Attribute VXChange.VB_VarUserMemId = 1073741881
Public VYChange() As Single
Attribute VYChange.VB_VarUserMemId = 1073741882
Public VZChange() As Single
Attribute VZChange.VB_VarUserMemId = 1073741883
Public P1() As Long
Attribute P1.VB_VarUserMemId = 1073741884
Public P2() As Long
Attribute P2.VB_VarUserMemId = 1073741885
Public arrDX() As Single
Attribute arrDX.VB_VarUserMemId = 1073741886
Public arrDY() As Single
Attribute arrDY.VB_VarUserMemId = 1073741887
Public arrDZ() As Single
Attribute arrDZ.VB_VarUserMemId = 1073741888
Public arrD() As Single
Attribute arrD.VB_VarUserMemId = 1073741889
Public RetNofPairs As Long
Attribute RetNofPairs.VB_VarUserMemId = 1610809352
Public MaxNofPairs As Long
Attribute MaxNofPairs.VB_VarUserMemId = 1073741891
Public CAMERA As c3DEasyCam
Attribute CAMERA.VB_VarUserMemId = 1073741892
Public COMx As Single
Attribute COMx.VB_VarUserMemId = 1073741893
Public COMy As Single
Attribute COMy.VB_VarUserMemId = 1073741894
Public COMz As Single
Attribute COMz.VB_VarUserMemId = 1073741895
Public CamRot As Boolean
Attribute CamRot.VB_VarUserMemId = 1073741896
Public TestMaxDens As Single
Attribute TestMaxDens.VB_VarUserMemId = 1073741897
Public Sub SPH_InitConst()
Dim R As Single
Dim kernelWeight As Single
Dim I As Single
R = 0.33333333333
' RestDensity = SmoothKernel_3(r) * 6 ' 2D
' RestDensity = SmoothKernel_3(R) * 6 ' 3D
RestDensity = SmoothKernel_3(R) * 4.8 '5 '5 '2023
' RestDensity = SmoothKernel_3(R) * 5 * 3 'Without Attraction
For R = 0 To 1 Step 0.001
I = I + 1
kernelWeight = kernelWeight + SmoothKernel_3(R)
Next
'kernelWeight = kernelWeight / (I + 1)
kernelWeight = kernelWeight / (I)
INVRestDensity = 1 / RestDensity
' PressureLimit = 400 '200 '100 '50 '45 '20
PressureLimit = 500 '800 '2022
DT = 0.25
invDT = 1 / DT
'KAttraction = 0.0128 * invDT
KAttraction = 0.0128 * invDT * 0.65 ' 0.72 '0.75 ' 0.85 '2023
'KAttraction = 0 'Without Attraction
' 'KPressure = kernelWeight * 0.08 * invDT
KPressure = kernelWeight * 0.15 ' 0.12 '0.15 '0.12 '0.15 * invDT '2022
KPressure = KPressure * 2.5 '* 1.5
'KPressure = KPressure * 80 'Without Attraction
'KViscosity = 0.018 * 0.8
KViscosity = 0.018 * 0.5 '1 '1.5 ' 0.66 '0.5 '2022
'KViscosity = KViscosity * 1 'Without Attraction
ReDim VXChange(NP)
ReDim VYChange(NP)
ReDim VZChange(NP)
ReDim Density(NP)
ReDim Pressure(NP)
ReDim INVDensity(NP)
ReDim Phase(NP)
ReDim SQR_Table(TABLESLength)
ReDim Normalize_Table(TABLESLength)
ReDim SmoothKernel_Table(TABLESLength)
ReDim InvDensity_Table(TABLESLength)
ReDim Visco_Table(TABLESLength)
For I = 0 To TABLESLength
SQR_Table(I) = Sqr(I / TABLESLength)
If I Then Normalize_Table(I) = 1 / (H * I / TABLESLength)
SmoothKernel_Table(I) = SmoothKernel_3(I / TABLESLength)
If I Then InvDensity_Table(I) = 1 / (ExpectedMaxDensity * (I / TABLESLength)) '
R = I / TABLESLength
' If R Then Visco_Table(I) = -0.5 * R * R * R + R * R + 0.5 / R - 1
If R Then Visco_Table(I) = (1 - R) ^ 5 '2023
Next
End Sub
Public Sub SPH_MOVE()
Dim I As Long
Dim invNP As Single
Dim DX As Single
Dim DY As Single
Dim DZ As Single
Dim D As Single
Dim F As Single
Dim wwH As Single, HHH As Single, zzH As Single
Dim S As Single
wwH = WW - H
HHH = HH - H
zzH = ZZ - H
For I = 1 To NP
vX(I) = vX(I) + VXChange(I) + gX * DT
vY(I) = vY(I) + VYChange(I) + gY * DT
vZ(I) = vZ(I) + VZChange(I) + gZ * DT
VXChange(I) = 0
VYChange(I) = 0
VZChange(I) = 0
vX(I) = vX(I) * 0.9995 ' 0.998
vY(I) = vY(I) * 0.9995 ' 0.998
vZ(I) = vZ(I) * 0.9995 ' 0.998
px(I) = px(I) + vX(I) * DT
py(I) = py(I) + vY(I) * DT
pz(I) = pz(I) + vZ(I) * DT
Density(I) = 0
If px(I) < 0 Then px(I) = -px(I): vX(I) = -vX(I) * kRestitution: vY(I) = vY(I) * kWallFriction: vZ(I) = vZ(I) * kWallFriction
If py(I) < 0 Then py(I) = -py(I): vY(I) = -vY(I) * kRestitution: vX(I) = vX(I) * kWallFriction: vZ(I) = vZ(I) * kWallFriction
If pz(I) < 0 Then pz(I) = -pz(I): vZ(I) = -vZ(I) * kRestitution: vX(I) = vX(I) * kWallFriction: vY(I) = vY(I) * kWallFriction
If px(I) > WW Then px(I) = WW - (px(I) - WW): vX(I) = -vX(I) * kRestitution: vY(I) = vY(I) * kWallFriction: vZ(I) = vZ(I) * kWallFriction
If py(I) > HH Then py(I) = HH - (py(I) - HH): vY(I) = -vY(I) * kRestitution: vX(I) = vX(I) * kWallFriction: vZ(I) = vZ(I) * kWallFriction
If pz(I) > ZZ Then pz(I) = ZZ - (pz(I) - ZZ): vZ(I) = -vZ(I) * kRestitution: vX(I) = vX(I) * kWallFriction: vY(I) = vY(I) * kWallFriction
' -------------------------------- FAKE boundary (density) and (VEL)
If px(I) < H Then S = SmoothKernel_3(px(I) * invH): Density(I) = Density(I) + S * kFakeDensity: VXChange(I) = VXChange(I) + S * invDT * kFakeVel
If py(I) < H Then S = SmoothKernel_3(py(I) * invH): Density(I) = Density(I) + S * kFakeDensity: VYChange(I) = VYChange(I) + S * invDT * kFakeVel
If pz(I) < H Then S = SmoothKernel_3(pz(I) * invH): Density(I) = Density(I) + S * kFakeDensity: VZChange(I) = VZChange(I) + S * invDT * kFakeVel
If px(I) > wwH Then S = SmoothKernel_3((WW - px(I)) * invH): Density(I) = Density(I) + S * kFakeDensity: VXChange(I) = VXChange(I) - S * invDT * kFakeVel
If py(I) > HHH Then S = SmoothKernel_3((HH - py(I)) * invH): Density(I) = Density(I) + S * kFakeDensity: VYChange(I) = VYChange(I) - S * invDT * kFakeVel
If pz(I) > zzH Then S = SmoothKernel_3((ZZ - pz(I)) * invH): Density(I) = Density(I) + S * kFakeDensity: VZChange(I) = VZChange(I) - S * invDT * kFakeVel
'----------------------------------------
COMx = COMx + px(I)
COMy = COMy + py(I)
COMz = COMz + pz(I)
Next
' invNP = 1 / NP
' COMx = COMx * invNP
' COMy = COMy * invNP
' COMz = COMz * invNP
If COMGravity Then
invNP = 1 / NP
COMx = COMx * invNP
COMy = COMy * invNP
COMz = COMz * invNP
For I = 1 To NP
DX = px(I) - COMx
DY = py(I) - COMy
DZ = pz(I) - COMz
D = DX * DX + DY * DY + DZ * DZ
D = 1 / (1 + D)
F = D * GravScale * NP * 0.0002
vX(I) = vX(I) - DX * F
vY(I) = vY(I) - DY * F
vZ(I) = vZ(I) - DZ * F
Next
End If
End Sub
Public Sub SPH_ComputePAIRS()
Dim pair As Long
Dim D As Single
Dim I As Long
Dim J As Long
Dim DX As Single
Dim DY As Single
Dim DZ As Single
Dim NormalizedDX As Single
Dim NormalizedDY As Single
Dim NormalizedDZ As Single
Dim InvD As Single
Dim R As Single
Dim Smooth As Single
Dim VXcI As Single
Dim VYcI As Single
Dim VZcI As Single
Dim VXcJ As Single
Dim VYcJ As Single
Dim VZcJ As Single
Dim K As Single
Dim iX As Single
Dim iY As Single
Dim IZ As Single
Dim SmoothPRESS As Single
Dim Pij As Single
Dim vDX As Single
Dim vDY As Single
Dim vDZ As Single
Dim OmR As Single
Dim DOTvel As Single
'PRE comute pairs .... only for DENSITY / Pressure
'------------------------------------------- DENSITY
For pair = 1 To RetNofPairs
' D = Sqr(arrD(pair)) ''''''''''''''<<<<<<<<<< SQR
' arrD(pair) = D
'-------------------
D = H * SQR_Table(TABLESLength * arrD(pair) * InvH2) ' Avoid SQR using a table
'-------------------
' D = TABLESLength * arrD(pair) * InvH2
' If D >= 1.10492178673608E-02 Then
' D = h * SQR_Table(D) ' Avoid SQR using a table
' Else
' D = Sqr(arrD(pair))
' End If
'-------------------
arrD(pair) = D
' If D Then
I = P1(pair)
J = P2(pair)
R = D * invH
' Smooth = SmoothKernel_3(R)
Smooth = SmoothKernel_Table(R * TABLESLength)
Density(I) = Density(I) + Smooth
Density(J) = Density(J) + Smooth
' End If
Next
'------------------------------------------- PRESSURE
For I = 1 To NP
Pressure(I) = (Density(I) - RestDensity) * INVRestDensity
If Pressure(I) > PressureLimit Then
Pressure(I) = PressureLimit
ElseIf Pressure(I) < -PressureLimit Then
Pressure(I) = -PressureLimit
End If
'Reset Density
' Density(I) = 0 'move to SPH_MOVE
If Density(I) > 0.0005 Then
If Density(I) > TestMaxDens Then TestMaxDens = Density(I)
' INVDensity(I) = 1 / Density(I)
If Density(I) > ExpectedMaxDensity Then Density(I) = ExpectedMaxDensity
INVDensity(I) = InvDensity_Table(TABLESLength * Density(I) * INVExpectedMaxDensity)
Else
INVDensity(I) = 0
End If
Next
'---------------------------------------------
' main PAIRS computation
For pair = 1 To RetNofPairs
I = P1(pair)
J = P2(pair)
DX = arrDX(pair)
DY = arrDY(pair)
DZ = arrDZ(pair)
D = arrD(pair)
If D Then
R = D * invH ' the distance between particles in range 0-1
OmR = 1 - R
' InvD = 1 / D ' <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
InvD = Normalize_Table(R * TABLESLength) ' AVOID Division
NormalizedDX = DX * InvD
NormalizedDY = DY * InvD
NormalizedDZ = DZ * InvD
'----------------------------------------------------------------
VXcI = VXChange(I)
VYcI = VYChange(I)
VZcI = VZChange(I)
VXcJ = VXChange(J)
VYcJ = VYChange(J)
VZcJ = VZChange(J)
If Phase(I) = Phase(J) Then
' <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< ATTRACTION
K = OmR * OmR * KAttraction
iX = NormalizedDX * K
iY = NormalizedDY * K
IZ = NormalizedDZ * K
VXcI = VXcI + iX
VYcI = VYcI + iY
VZcI = VZcI + IZ
VXcJ = VXcJ - iX
VYcJ = VYcJ - iY
VZcJ = VZcJ - IZ
' Smooth = SmoothKernel_3(R)
Smooth = SmoothKernel_Table(R * TABLESLength)
' <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< PRESSURE
SmoothPRESS = Smooth * OmR ' V 1
Pij = 0.5 * (Pressure(I) + Pressure(J)) * SmoothPRESS * KPressure
iX = NormalizedDX * Pij
iY = NormalizedDY * Pij
IZ = NormalizedDZ * Pij
VXcI = VXcI - iX
VYcI = VYcI - iY
VZcI = VZcI - IZ
VXcJ = VXcJ + iX
VYcJ = VYcJ + iY
VZcJ = VZcJ + IZ
' <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< VISCOSITY 1
'' ' Without Densities sum division (1st Version)
'' vDX = vX(J) - vX(I)
'' vDY = vY(J) - vY(I)
'' K = -0.5 * r * r * r + r * r + 0.5 * InvD * H - 1
'' K = K * KViscosity
'' 'particles are Separating ?
'' If (dX * vDX + dY * vDY) < 0 Then K = K * 0.005 '025
'' If K > 1 Then K = 1
'' iX = vDX * K
'' iY = vDY * K
'' VXcI = VXcI + iX
'' VYcI = VYcI + iY
'' VXcJ = VXcJ - iX
'' VYcJ = VYcJ - iY
' <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< VISCOSITY 2
' Inverse proportional to Densities Sum
' K = KViscosity * OmR * OmR
' K = -0.5 * r * r * r + r * r + 1 / (2 * r) - 1
' Same but without division:
vDX = vX(J) - vX(I)
vDY = vY(J) - vY(I)
vDZ = vZ(J) - vZ(I)
' K = (-0.5 * R * R * R + R * R + 0.5 * InvD * h - 1 )* KViscosity
K = Visco_Table(R * TABLESLength) * KViscosity
' MODE 2 -----------<<<<<<< difference from above
'''''Before 2023 OK
''' K = K * 8.3 * (INVDensity(I) + INVDensity(J))
'''
''' 'particles are Separating ?
''' 'If (DX * vDX + DY * vDY + DZ * vDZ) < 0 Then K = K * 0.001 '025
'''
''''' If (NormalizedDX * vDX + NormalizedDY * vDY + NormalizedDZ * vDZ) < 0 Then K = K * 0.001 '025
''''' If K > 0.5 Then K = 0.5
'DOTvel = (NormalizedDX * vDX + NormalizedDY * vDY + NormalizedDZ * vDZ)
'* 15
K = K * 15: If K > 1 Then K = 1
iX = vDX * K
iY = vDY * K
IZ = vDZ * K
'If DOTvel < 0 Then
VXcI = VXcI + iX
VYcI = VYcI + iY
VZcI = VZcI + IZ
'Else
VXcJ = VXcJ - iX
VYcJ = VYcJ - iY
VZcJ = VZcJ - IZ
'End If
Else
K = OmR * OmR * KAttraction * 26
iX = NormalizedDX * K
iY = NormalizedDY * K
IZ = NormalizedDZ * K
VXcI = VXcI - iX
VYcI = VYcI - iY
VZcI = VZcI - IZ
VXcJ = VXcJ + iX
VYcJ = VYcJ + iY
VZcJ = VZcJ + IZ
End If
'----------------------------------------------------------------
VXChange(I) = VXcI
VYChange(I) = VYcI
VZChange(I) = VZcI
VXChange(J) = VXcJ
VYChange(J) = VYcJ
VZChange(J) = VZcJ
'----------------------------------------------------------------
Else
' Beep
'
'
' MsgBox I & " " & J & " Same position"
' VXChange(I) = VXChange(I) + (Rnd * 2 - 1) * 0.1 * h * 9
' VYChange(I) = VYChange(I) + (Rnd * 2 - 1) * 0.1 * h * 9
' VZChange(I) = VZChange(I) + (Rnd * 2 - 1) * 0.1 * h * 9
'
' VXChange(J) = VXChange(J) + (Rnd * 2 - 1) * 0.1 * h * 9
' VYChange(J) = VYChange(J) + (Rnd * 2 - 1) * 0.1 * h * 9
' VZChange(J) = VZChange(J) + (Rnd * 2 - 1) * 0.1 * h * 9
px(I) = px(I) + (Rnd * 2 - 1) * 0.001 * H '* 9
py(I) = py(I) + (Rnd * 2 - 1) * 0.001 * H '* 9
pz(I) = pz(I) + (Rnd * 2 - 1) * 0.001 * H '* 9
px(J) = px(J) + (Rnd * 2 - 1) * 0.001 * H '* 9
py(J) = py(J) + (Rnd * 2 - 1) * 0.001 * H '* 9
pz(J) = pz(J) + (Rnd * 2 - 1) * 0.001 * H '* 9
End If
Next
End Sub
Private Function SmoothKernel_1(ByVal R As Single) As Single
SmoothKernel_1 = 1 - R * R * (3 - 2 * R)
End Function
Private Function SmoothKernel_2(ByVal R As Single) As Single
'A new kernel function for SPH with applications to free surfaceflowsqX.F. Yanga, S.L. Pengb, M.B. Liu
SmoothKernel_2 = (4 * Cos(PI * R) + Cos(PI2 * R) + 3) * 0.125
End Function
Public Function SmoothKernel_3(ByVal R As Single) As Single
''http://www.astro.lu.se/~david/teaching/SPH/notes/annurev.aa.30.090192.pdf
R = R * 2
If R <= 1 Then
SmoothKernel_3 = 1 - 1.5 * R * R + 0.75 * R * R * R
Else
R = 2 - R
SmoothKernel_3 = 0.25 * R * R * R
End If
'SmoothKernel_3 = Exp(-R * R * 6.5)
End Function
Public Function SmoothKernel_4(ByVal R As Single) As Single
'https://www.desmos.com/calculator/o3hktwyuo5
R = 1 - R
SmoothKernel_4 = R * R * R * (6 * R * R - 15 * R + 10)
End Function