forked from seongahjo/speak_like_zhang
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpreprocess.py
233 lines (188 loc) · 9.16 KB
/
preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
# coding: utf-8
"""
python preprocess.py --num_workers 10 --name son --in_dir D:\hccho\multi-speaker-tacotron-tensorflow-master\datasets\son --out_dir .\data\son
python preprocess.py --num_workers 10 --name moon --in_dir D:\hccho\multi-speaker-tacotron-tensorflow-master\datasets\moon --out_dir .\data\moon
==> out_dir에 'audio', 'mel', 'linear', 'time_steps', 'mel_frames', 'text', 'tokens', 'loss_coeff'를 묶은 npz파일이 생성된다.
"""
import argparse
import os
import json
from multiprocessing import cpu_count
from tqdm import tqdm
from hparams import hparams, hparams_debug_string
import warnings
import nltk
from concurrent.futures import ProcessPoolExecutor
from functools import partial
import numpy as np
from utils import audio
from text import text_to_sequence
nltk.download('punkt')
warnings.simplefilter(action='ignore', category=FutureWarning)
def _process_utterance(out_dir, wav_path, text, hparams):
"""
Preprocesses a single utterance wav/text pair
this writes the mel scale spectogram to disk and return a tuple to write
to the train.txt file
Args:
- mel_dir: the directory to write the mel spectograms into
- linear_dir: the directory to write the linear spectrograms into
- wav_dir: the directory to write the preprocessed wav into
- index: the numeric index to use in the spectogram filename
- wav_path: path to the audio file containing the speech input
- text: text spoken in the input audio file
- hparams: hyper parameters
Returns:
- A tuple: (audio_filename, mel_filename, linear_filename, time_steps, mel_frames, linear_frames, text)
"""
try:
# Load the audio as numpy array
wav = audio.load_wav(wav_path, sr=hparams.sample_rate)
except FileNotFoundError: # catch missing wav exception
print('file {} present in csv metadata is not present in wav folder. skipping!'.format(
wav_path))
return None
# rescale wav
if hparams.rescaling: # hparams.rescale = True
wav = wav / np.abs(wav).max() * hparams.rescaling_max
# M-AILABS extra silence specific
if hparams.trim_silence: # hparams.trim_silence = True
wav = audio.trim_silence(wav, hparams) # Trim leading and trailing silence
# Mu-law quantize, default 값은 'raw'
if hparams.input_type == 'mulaw-quantize':
# [0, quantize_channels)
out = audio.mulaw_quantize(wav, hparams.quantize_channels)
# Trim silences
start, end = audio.start_and_end_indices(out, hparams.silence_threshold)
wav = wav[start: end]
out = out[start: end]
constant_values = audio.mulaw_quantize(0, hparams.quantize_channels)
out_dtype = np.int16
elif hparams.input_type == 'mulaw':
# [-1, 1]
out = audio.mulaw(wav, hparams.quantize_channels)
constant_values = audio.mulaw(0., hparams.quantize_channels)
out_dtype = np.float32
else: # raw
# [-1, 1]
out = wav
constant_values = 0.
out_dtype = np.float32
# Compute the mel scale spectrogram from the wav
mel_spectrogram = audio.melspectrogram(wav, hparams).astype(np.float32)
mel_frames = mel_spectrogram.shape[1]
if mel_frames > hparams.max_mel_frames and hparams.clip_mels_length: # hparams.max_mel_frames = 1000, hparams.clip_mels_length = True
return None
# Compute the linear scale spectrogram from the wav
linear_spectrogram = audio.linearspectrogram(wav, hparams).astype(np.float32)
linear_frames = linear_spectrogram.shape[1]
# sanity check
assert linear_frames == mel_frames
if hparams.use_lws: # hparams.use_lws = False
# Ensure time resolution adjustement between audio and mel-spectrogram
fft_size = hparams.fft_size if hparams.win_size is None else hparams.win_size
l, r = audio.pad_lr(wav, fft_size, audio.get_hop_size(hparams))
# Zero pad audio signal
out = np.pad(out, (l, r), mode='constant', constant_values=constant_values)
else:
# Ensure time resolution adjustement between audio and mel-spectrogram
pad = audio.librosa_pad_lr(wav, hparams.fft_size, audio.get_hop_size(hparams))
# Reflect pad audio signal (Just like it's done in Librosa to avoid frame inconsistency)
out = np.pad(out, pad, mode='reflect')
assert len(out) >= mel_frames * audio.get_hop_size(hparams)
# time resolution adjustement
# ensure length of raw audio is multiple of hop size so that we can use
# transposed convolution to upsample
out = out[:mel_frames * audio.get_hop_size(hparams)]
assert len(out) % audio.get_hop_size(hparams) == 0
time_steps = len(out)
# Write the spectrogram and audio to disk
wav_id = os.path.splitext(os.path.basename(wav_path))[0]
# Write the spectrograms to disk:
audio_filename = '{}-audio.npy'.format(wav_id)
mel_filename = '{}-mel.npy'.format(wav_id)
linear_filename = '{}-linear.npy'.format(wav_id)
npz_filename = '{}.npz'.format(wav_id)
npz_flag = True
if npz_flag:
# Tacotron 코드와 맞추기 위해, 같은 key를 사용한다.
data = {
'audio': out.astype(out_dtype),
'mel': mel_spectrogram.T,
'linear': linear_spectrogram.T,
'time_steps': time_steps,
'mel_frames': mel_frames,
'text': text,
'tokens': text_to_sequence(text), # eos(~)에 해당하는 "1"이 끝에 붙는다.
'loss_coeff': 1 # For Tacotron
}
np.savez(os.path.join(out_dir, npz_filename), **data, allow_pickle=False)
else:
np.save(os.path.join(out_dir, audio_filename), out.astype(out_dtype), allow_pickle=False)
np.save(os.path.join(out_dir, mel_filename), mel_spectrogram.T, allow_pickle=False)
np.save(os.path.join(out_dir, linear_filename), linear_spectrogram.T, allow_pickle=False)
# Return a tuple describing this training example
return (audio_filename, mel_filename, linear_filename, time_steps, mel_frames, text, npz_filename)
def build_from_path(hparams, in_dir, out_dir, num_workers=1, tqdm=lambda x: x):
"""
Preprocesses the speech dataset from a gven input path to given output directories
Args:
- hparams: hyper parameters
- input_dir: input directory that contains the files to prerocess
- out_dir: output directory of npz files
- n_jobs: Optional, number of worker process to parallelize across
- tqdm: Optional, provides a nice progress bar
Returns:
- A list of tuple describing the train examples. this should be written to train.txt
"""
executor = ProcessPoolExecutor(max_workers=num_workers)
futures = []
index = 1
path = os.path.join(in_dir, 'alignment.json')
with open(path, encoding='utf-8') as f:
content = f.read()
data = json.loads(content)
for key, text in data.items():
wav_path = key.strip().split('/')
wav_path = os.path.join(in_dir, 'audio', '%s' % wav_path[-1])
# In case of test file
if not os.path.exists(wav_path):
continue
futures.append(executor.submit(partial(_process_utterance, out_dir, wav_path, text, hparams)))
index += 1
return [future.result() for future in tqdm(futures) if future.result() is not None]
def preprocess(in_dir, out_dir, num_workers):
os.makedirs(out_dir, exist_ok=True)
metadata = build_from_path(hparams, in_dir, out_dir, num_workers=num_workers, tqdm=tqdm)
write_metadata(metadata, out_dir)
def write_metadata(metadata, out_dir):
with open(os.path.join(out_dir, 'train.txt'), 'w', encoding='utf-8') as f:
for m in metadata:
f.write('|'.join([str(x) for x in m]) + '\n')
mel_frames = sum([int(m[4]) for m in metadata])
timesteps = sum([int(m[3]) for m in metadata])
sr = hparams.sample_rate
hours = timesteps / sr / 3600
print('Write {} utterances, {} mel frames, {} audio timesteps, ({:.2f} hours)'.format(len(metadata), mel_frames,
timesteps, hours))
print('Max input length (text chars): {}'.format(max(len(m[5]) for m in metadata)))
print('Max mel frames length: {}'.format(max(int(m[4]) for m in metadata)))
print('Max audio timesteps length: {}'.format(max(m[3] for m in metadata)))
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--name', type=str, default=None)
parser.add_argument('--in_dir', type=str, default=None)
parser.add_argument('--out_dir', type=str, default=None)
parser.add_argument('--num_workers', type=str, default=None)
parser.add_argument('--hparams', type=str, default=None)
args = parser.parse_args()
if args.hparams is not None:
hparams.parse(args.hparams)
print(hparams_debug_string())
name = args.name
in_dir = args.in_dir
out_dir = args.out_dir
num_workers = args.num_workers
num_workers = cpu_count() if num_workers is None else int(num_workers) # cpu_count() = process 갯수
print("Sampling frequency: {}".format(hparams.sample_rate))
preprocess(in_dir, out_dir, num_workers)