-
Notifications
You must be signed in to change notification settings - Fork 6
/
Fig2b.m
38 lines (38 loc) · 1.11 KB
/
Fig2b.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
%% Compute and plot Figure 2(b)
clear,clc
close all
p1 = pwd;
addpath(genpath(p1))
fprintf('****** Reconstruction of Tangent Field by FaVeST ******\n')
% % Generate an simulated tangent field
ivf = 2;
switch ivf
case 1
vf = @flow1;
vf_txt = 'Tangent Field A';
case 2
vf = @flow2;
vf_txt = 'Tangent Field B';
case 3
vf = @flow3;
vf_txt = 'Tangent Field C';
end
L = 30;
QH = 'GL';
fprintf('%s, Quadrature: %s, L: %d\n',vf_txt,QH,L)
[w_gl,x_gl,X_gl] = QpS2(L,QH);
[lam,th,r] = cart2sph(X_gl(1,:)',X_gl(2,:)',X_gl(3,:)');
Y_tar = vf(X_gl);
% % Running FaVeST_fwd and FaVeST_adj
% Fast evaluate Fourier coefficients for divergent-free and curl-free parts
[F1,F2] = FaVeST_fwd(Y_tar',L,x_gl,w_gl);
% Fast compute Fourier summation with the given Fourier coefficients
Y_rec = FaVeST_adj(F1,F2,x_gl);
Y_rec = real(Y_rec);
% Calculate the approximation error
err_pntwise = Y_rec-Y_tar;
err_abs = norm(err_pntwise);
err_rela = err_abs/norm(Y_tar);
fprintf('== Absolute Error: %.4e, Relative Error: %.4e\n',err_abs,err_rela);
% Plotting
Visualization(lam,th,Y_tar,Y_rec,err_pntwise)