diff --git a/doc_conf/conf.py b/doc_conf/conf.py index 377df17..8fa93e2 100644 --- a/doc_conf/conf.py +++ b/doc_conf/conf.py @@ -80,9 +80,9 @@ bibtex_footbibliography_header = "" # General information about the project. -project = u'HiDimStat' -copyright = u'2024, Mind-Inria' -author = u'Mind-Inria' +project = "HiDimStat" +copyright = "2024, Mind-Inria" +author = "Mind-Inria" # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the diff --git a/hidimstat/test/test_BBI.py b/hidimstat/test/test_BBI.py index 8c0a2a2..4731094 100644 --- a/hidimstat/test/test_BBI.py +++ b/hidimstat/test/test_BBI.py @@ -13,10 +13,10 @@ def _generate_data( - n_samples=100, n_features=10, prob_type="regression", grps_exp=False, seed=2024 + n_samples=100, n_features=10, problem_type="regression", grps_exp=False, seed=2024 ): - if prob_type == "regression": + if problem_type == "regression": X, y = make_regression( n_samples=n_samples, noise=0.2, @@ -60,16 +60,16 @@ def _generate_data( def test_BBI_reg(): - X, y, _, list_nominal = _generate_data(prob_type="regression") + X, y, _, list_nominal = _generate_data(problem_type="regression") # DNN bbi_reg_dnn = BlockBasedImportance( estimator=None, importance_estimator="Mod_RF", - do_hyper=True, - dict_hyper=None, + do_hypertuning=True, + dict_hypertuning=None, conditional=False, group_stacking=False, - prob_type="regression", + problem_type="regression", k_fold=2, list_nominal=list_nominal, n_jobs=10, @@ -84,11 +84,11 @@ def test_BBI_reg(): bbi_reg_rf = BlockBasedImportance( estimator="RF", importance_estimator="Mod_RF", - do_hyper=True, - dict_hyper=None, + do_hypertuning=True, + dict_hypertuning=None, conditional=False, group_stacking=False, - prob_type="regression", + problem_type="regression", k_fold=2, list_nominal=list_nominal, n_jobs=10, @@ -102,16 +102,16 @@ def test_BBI_reg(): def test_BBI_class(): - X, y, _, list_nominal = _generate_data(prob_type="classification") + X, y, _, list_nominal = _generate_data(problem_type="classification") # DNN bbi_class_dnn = BlockBasedImportance( estimator=None, importance_estimator="Mod_RF", - do_hyper=True, - dict_hyper=None, + do_hypertuning=True, + dict_hypertuning=None, conditional=False, group_stacking=False, - prob_type="classification", + problem_type="classification", k_fold=2, list_nominal=list_nominal, n_jobs=10, @@ -126,11 +126,11 @@ def test_BBI_class(): bbi_class_rf = BlockBasedImportance( estimator="RF", importance_estimator="Mod_RF", - do_hyper=True, - dict_hyper=None, + do_hypertuning=True, + dict_hypertuning=None, conditional=False, group_stacking=False, - prob_type="classification", + problem_type="classification", k_fold=2, list_nominal=list_nominal, n_jobs=10, @@ -149,10 +149,10 @@ def test_BBI_condDNN(): bbi_res = BlockBasedImportance( estimator=None, importance_estimator=None, - do_hyper=True, - dict_hyper=None, + do_hypertuning=True, + dict_hypertuning=None, group_stacking=False, - prob_type="regression", + problem_type="regression", k_fold=2, list_nominal=list_nominal, n_jobs=10, @@ -167,10 +167,10 @@ def test_BBI_condDNN(): bbi_samp = BlockBasedImportance( estimator=None, importance_estimator="Mod_RF", - do_hyper=True, - dict_hyper=None, + do_hypertuning=True, + dict_hypertuning=None, group_stacking=False, - prob_type="regression", + problem_type="regression", k_fold=2, list_nominal=list_nominal, n_jobs=10, @@ -188,11 +188,11 @@ def test_BBI_permDNN(): bbi_perm = BlockBasedImportance( estimator=None, importance_estimator="Mod_RF", - do_hyper=True, - dict_hyper=None, + do_hypertuning=True, + dict_hypertuning=None, conditional=False, group_stacking=False, - prob_type="regression", + problem_type="regression", k_fold=2, list_nominal=list_nominal, n_jobs=10, @@ -211,12 +211,12 @@ def test_BBI_grp(): bbi_grp_noStack = BlockBasedImportance( estimator="RF", importance_estimator="Mod_RF", - do_hyper=True, - dict_hyper=None, + do_hypertuning=True, + dict_hypertuning=None, conditional=False, groups=grps, group_stacking=False, - prob_type="regression", + problem_type="regression", k_fold=2, list_nominal=list_nominal, n_jobs=10, @@ -231,12 +231,12 @@ def test_BBI_grp(): bbi_grp_stack = BlockBasedImportance( estimator="RF", importance_estimator="Mod_RF", - do_hyper=True, - dict_hyper=None, + do_hypertuning=True, + dict_hypertuning=None, conditional=False, groups=grps, group_stacking=True, - prob_type="regression", + problem_type="regression", k_fold=2, list_nominal=list_nominal, n_jobs=10,