If
You check that the sum of the geometric multiplicities is equal to the size of the matrix.
e.g. for
$$
\begin{bmatrix}
1 & & -1 \
& 2 & \
& & 1
\end{bmatrix}
$$
Find the eigenvalues:
$$
\displaylines{
\begin{vmatrix}
1-\lambda & & -1 \
& 2-\lambda & \
& & 1-\lambda
\end{vmatrix} = (1-\lambda)^2 (2-\lambda) = 0\
\therefore \lambda = 1,1,2
}
$$
We know that geomult <= algmult. Therefore
$$
\displaylines{
\text{Express the vector $\vec{x}0 =$}
\begin{bmatrix}
4 \
5
\end{bmatrix}
\text{ as a linear combination of the vectors }\
\vec{v}1 = \begin{bmatrix}
1 \
1
\end{bmatrix}
\text{ and }
\vec{v_2} =\begin{bmatrix}
1 \
-1
\end{bmatrix}
\text{ and find the coordinates of } \vec{x_0} \text{ in the basis}\
\mathcal{B} = {\vec{v_1}, \vec{v_2}}\
\
[\vec{x_0}]{\mathcal{B}} = ?\quad\quad\quad
[\vec{x_0}]{\mathcal{B}} = \begin{bmatrix}
4.5 \
-0.5
\end{bmatrix}\
\
\sim \
\
\text{Let } P = [\vec{v_1}\ \vec{v_2}],\ D = \begin{bmatrix}
1 & 0 \
0 & -1
\end{bmatrix}\
\
[A^k\ \vec{x}0]{\mathcal{B}} =\ ? \quad\quad\text{where } A = PDP^{-1},\ k\in \mathbb{Z}^{+}\
\
A^k = PD^k P^{-1} = [\vec{v_1}\ \vec{v_2}]
\begin{bmatrix}
1^k & \
& (-1)^k
\end{bmatrix}
[\vec{v_1}\ \vec{v_2}]^{-1}\
[A^k\ \vec{x}0]{\mathcal{B}} =\ ?
}
$$
#todo