forked from kaarthik108/snowChat
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchain.py
155 lines (134 loc) · 5.38 KB
/
chain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
from typing import Any, Callable, Dict, Optional
import streamlit as st
from langchain_community.chat_models import ChatOpenAI
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.llms import OpenAI
from langchain.vectorstores import SupabaseVectorStore
from pydantic import BaseModel, validator
from supabase.client import Client, create_client
from template import CONDENSE_QUESTION_PROMPT, QA_PROMPT
from operator import itemgetter
from langchain.prompts.prompt import PromptTemplate
from langchain.schema import format_document
from langchain_core.messages import get_buffer_string
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnableParallel, RunnablePassthrough
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
from langchain_anthropic import ChatAnthropic
DEFAULT_DOCUMENT_PROMPT = PromptTemplate.from_template(template="{page_content}")
supabase_url = st.secrets["SUPABASE_URL"]
supabase_key = st.secrets["SUPABASE_SERVICE_KEY"]
supabase: Client = create_client(supabase_url, supabase_key)
class ModelConfig(BaseModel):
model_type: str
secrets: Dict[str, Any]
callback_handler: Optional[Callable] = None
class ModelWrapper:
def __init__(self, config: ModelConfig):
self.model_type = config.model_type
self.secrets = config.secrets
self.callback_handler = config.callback_handler
self.llm = self._setup_llm()
def _setup_llm(self):
model_config = {
"gpt-4o-mini": {
"model_name": "gpt-4o-mini",
"api_key": self.secrets["OPENAI_API_KEY"],
},
"gemma2-9b": {
"model_name": "gemma2-9b-it",
"api_key": self.secrets["GROQ_API_KEY"],
"base_url": "https://api.groq.com/openai/v1",
},
"claude3-haiku": {
"model_name": "claude-3-haiku-20240307",
"api_key": self.secrets["ANTHROPIC_API_KEY"],
},
"mixtral-8x22b": {
"model_name": "accounts/fireworks/models/mixtral-8x22b-instruct",
"api_key": self.secrets["FIREWORKS_API_KEY"],
"base_url": "https://api.fireworks.ai/inference/v1",
},
"llama-3.1-405b": {
"model_name": "accounts/fireworks/models/llama-v3p1-405b-instruct",
"api_key": self.secrets["FIREWORKS_API_KEY"],
"base_url": "https://api.fireworks.ai/inference/v1",
},
}
config = model_config[self.model_type]
return (
ChatOpenAI(
model_name=config["model_name"],
temperature=0.1,
api_key=config["api_key"],
max_tokens=700,
callbacks=[self.callback_handler],
streaming=True,
base_url=config["base_url"]
if config["model_name"] != "gpt-4o-mini"
else None,
default_headers={
"HTTP-Referer": "https://snowchat.streamlit.app/",
"X-Title": "Snowchat",
},
)
if config["model_name"] != "claude-3-haiku-20240307"
else (
ChatAnthropic(
model=config["model_name"],
temperature=0.1,
max_tokens=700,
timeout=None,
max_retries=2,
callbacks=[self.callback_handler],
streaming=True,
)
)
)
def get_chain(self, vectorstore):
def _combine_documents(
docs, document_prompt=DEFAULT_DOCUMENT_PROMPT, document_separator="\n\n"
):
doc_strings = [format_document(doc, document_prompt) for doc in docs]
return document_separator.join(doc_strings)
_inputs = RunnableParallel(
standalone_question=RunnablePassthrough.assign(
chat_history=lambda x: get_buffer_string(x["chat_history"])
)
| CONDENSE_QUESTION_PROMPT
| OpenAI()
| StrOutputParser(),
)
_context = {
"context": itemgetter("standalone_question")
| vectorstore.as_retriever()
| _combine_documents,
"question": lambda x: x["standalone_question"],
}
conversational_qa_chain = _inputs | _context | QA_PROMPT | self.llm
return conversational_qa_chain
def load_chain(model_name="qwen", callback_handler=None):
embeddings = OpenAIEmbeddings(
openai_api_key=st.secrets["OPENAI_API_KEY"], model="text-embedding-ada-002"
)
vectorstore = SupabaseVectorStore(
embedding=embeddings,
client=supabase,
table_name="documents",
query_name="v_match_documents",
)
model_type_mapping = {
"gpt-4o-mini": "gpt-4o-mini",
"gemma2-9b": "gemma2-9b",
"claude3-haiku": "claude3-haiku",
"mixtral-8x22b": "mixtral-8x22b",
"llama-3.1-405b": "llama-3.1-405b",
}
model_type = model_type_mapping.get(model_name.lower())
if model_type is None:
raise ValueError(f"Unsupported model name: {model_name}")
config = ModelConfig(
model_type=model_type, secrets=st.secrets, callback_handler=callback_handler
)
model = ModelWrapper(config)
return model.get_chain(vectorstore)