-
Notifications
You must be signed in to change notification settings - Fork 0
/
qlearningAgents.py
251 lines (200 loc) · 8.68 KB
/
qlearningAgents.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
# qlearningAgents.py
# ------------------
# Licensing Information: You are free to use or extend these projects for
# educational purposes provided that (1) you do not distribute or publish
# solutions, (2) you retain this notice, and (3) you provide clear
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
#
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
# The core projects and autograders were primarily created by John DeNero
# ([email protected]) and Dan Klein ([email protected]).
# Student side autograding was added by Brad Miller, Nick Hay, and
# Pieter Abbeel ([email protected]).
from game import *
from learningAgents import ReinforcementAgent
from featureExtractors import *
from backend import ReplayMemory
import backend
import gridworld
import random,util,math
import numpy as np
import copy
class QLearningAgent(ReinforcementAgent):
"""
Q-Learning Agent
Functions you should fill in:
- computeValueFromQValues
- computeActionFromQValues
- getQValue
- getAction
- update
Instance variables you have access to
- self.epsilon (exploration prob)
- self.alpha (learning rate)
- self.discount (discount rate)
Functions you should use
- self.getLegalActions(state)
which returns legal actions for a state
"""
## q1: valueIteration: Verwendung von self.mdp -> hier nicht mehr weil wir ja über direkte erfahrung lernen
def __init__(self, **args):
"You can initialize Q-values here..."
ReinforcementAgent.__init__(self, **args)
"*** MY CODE HERE ***"
# defaultdict: gibt standardmäßig den Wert 0 zurück, wenn Wert noch nicht vorhanden
# Wenn ich self.q_values in __init__-Methode definiere, dann wird es in allen anderen Methoden der Klasse existieren
self.q_values = {}
def getQValue(self, state, action):
"""
Returns Q(state,action)
Should return 0.0 if we have never seen a state
or the Q node value otherwise
"""
"*** MY CODE HERE ***"
return self.q_values.get((state, action), 0.0)
def computeValueFromQValues(self, state):
"""
Returns max_action Q(state,action)
where the max is over legal actions. Note that if
there are no legal actions, which is the case at the
terminal state, you should return a value of 0.0.
"""
"*** MY CODE HERE ***"
max_q_value = float('-inf')
if not self.getLegalActions(state):
return 0.0
for action in self.getLegalActions(state):
q_value = self.getQValue(state,action)
if max_q_value < q_value:
max_q_value = q_value
return max_q_value
def computeActionFromQValues(self, state):
"""
Compute the best action to take in a state. Note that if there
are no legal actions, which is the case at the terminal state,
you should return None.
"""
"*** MY CODE HERE ***"
max_q_value = float('-inf')
best_action = None
if not self.getLegalActions(state):
return None
for action in self.getLegalActions(state):
q_value = self.getQValue(state,action)
if max_q_value < q_value:
max_q_value = q_value
best_action = action
return best_action
def getAction(self, state):
"""
Compute the action to take in the current state. With
probability self.epsilon, we should take a random action and
take the best policy action otherwise. Note that if there are
no legal actions, which is the case at the terminal state, you
should choose None as the action.
HINT: You might want to use util.flipCoin(prob)
HINT: To pick randomly from a list, use random.choice(list)
"""
# Pick Action
legalActions = self.getLegalActions(state)
action = None
"*** MY CODE HERE ***"
# entscheidung zw den possible actions -> get legalactions
# und dem besten option
# mit wahrscheinlichkeit epsilon wähle random
legalActions = self.getLegalActions(state)
if not legalActions:
return None
if util.flipCoin(self.epsilon): # mit epsilon wahrscheinlichkeit wird True zurückgegeben
return random.choice(legalActions)
else:
return self.computeActionFromQValues(state) # best action
def update(self, state, action, nextState, reward: float):
"""
The parent class calls this to observe a
state = action => nextState and reward transition.
You should do your Q-Value update here
NOTE: You should never call this function,
it will be called on your behalf
"""
"*** MY CODE HERE ***"
# update formel aus der vorlesung nachbilden
self.q_values[(state, action)] = (1-self.alpha) * self.getQValue(state, action) + self.alpha * (reward + self.discount * self.computeValueFromQValues(nextState))
def getPolicy(self, state):
return self.computeActionFromQValues(state)
def getValue(self, state):
return self.computeValueFromQValues(state)
class PacmanQAgent(QLearningAgent):
"Exactly the same as QLearningAgent, but with different default parameters"
def __init__(self, epsilon=0.05,gamma=0.8,alpha=0.2, numTraining=0, **args):
"""
These default parameters can be changed from the pacman.py command line.
For example, to change the exploration rate, try:
python pacman.py -p PacmanQLearningAgent -a epsilon=0.1
alpha - learning rate
epsilon - exploration rate
gamma - discount factor
numTraining - number of training episodes, i.e. no learning after these many episodes
"""
args['epsilon'] = epsilon
args['gamma'] = gamma
args['alpha'] = alpha
args['numTraining'] = numTraining
self.index = 0 # This is always Pacman
QLearningAgent.__init__(self, **args)
def getAction(self, state):
"""
Simply calls the getAction method of QLearningAgent and then
informs parent of action for Pacman. Do not change or remove this
method.
"""
action = QLearningAgent.getAction(self,state)
self.doAction(state,action)
return action
class ApproximateQAgent(PacmanQAgent):
"""
ApproximateQLearningAgent
You should only have to overwrite getQValue
and update. All other QLearningAgent functions
should work as is.
"""
def __init__(self, extractor='IdentityExtractor', **args):
self.featExtractor = util.lookup(extractor, globals())()
PacmanQAgent.__init__(self, **args)
self.weights = util.Counter()
def getWeights(self):
return self.weights
def getQValue(self, state, action):
"""
Should return Q(state,action) = w * featureVector
where * is the dotProduct operator
"""
"*** MY CODE HERE ***"
# Extrahiere den Merkmalsvektor für den Zustand und die Aktion
featureVector = self.featExtractor.getFeatures(state, action)
# Berechne das Skalarprodukt zwischen den Gewichtungen und dem Merkmalsvektor
q_value = sum(self.weights[feature] * value for feature, value in featureVector.items())
return q_value
def update(self, state, action, nextState, reward: float):
"""
Should update your weights based on transition
"""
"*** MY CODE HERE ***"
# Extrahiere den Merkmalsvektor für den aktuellen Zustand und die Aktion
featureVector = self.featExtractor.getFeatures(state, action)
current_q_value = self.getQValue(state, action)
# max_a' Q(nextState, a')
next_max_q_value = self.computeValueFromQValues(nextState)
# Temporal-Difference-Fehler (TD-Fehler)
td_error = (reward + self.discount * next_max_q_value) - current_q_value
# Aktualisiere die Gewichtungen
for feature, value in featureVector.items():
self.weights[feature] += self.alpha * td_error * value
def final(self, state):
"""Called at the end of each game."""
# call the super-class final method
PacmanQAgent.final(self, state)
# did we finish training?
if self.episodesSoFar == self.numTraining:
# you might want to print your weights here for debugging
"*** MY CODE HERE ***"