-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvector.c
68 lines (47 loc) · 3.75 KB
/
vector.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
#include <float.h>
#include <math.h>
#include <stdio.h>
#include "vector.h"
void VectorPrint(const Vector v) { printf("{{%Lf},{%Lf},{%Lf}}\n", v.x, v.y, v.z); }
bool VectorCompare(const Vector v1, const Vector v2) { return v1.x == v2.x && v1.y == v2.y && v1.z == v2.z; }
bool VectorCompareLoose(const Vector v1, const Vector v2, Real error) { return fabsl(v1.x - v2.x) < error && fabsl(v1.y - v2.y) < error && fabsl(v1.z - v2.z) < error; }
Vector VectorNegative(const Vector v) { return (Vector){-v.x, -v.y, -v.z}; }
Vector VectorAddition(const Vector v1, const Vector v2) { return (Vector){v1.x + v2.x, v1.y + v2.y, v1.z + v2.z}; }
Vector VectorSubtraction(const Vector v1, const Vector v2) { return (Vector){v1.x - v2.x, v1.y - v2.y, v1.z - v2.z}; }
Vector VectorScalarAddition(const Vector v, const Real value) { return (Vector){v.x + value, v.y + value, v.z + value}; }
Vector VectorScalarSubtraction(const Vector v, const Real value) { return (Vector){v.x - value, v.y - value, v.z - value}; }
Vector VectorScalarMultiplication(const Vector v, const Real value) { return (Vector){v.x * value, v.y * value, v.z * value}; }
Vector VectorScalarDivision(const Vector v, const Real value) { return (Vector){v.x / value, v.y / value, v.z / value}; }
Vector VectorCrossProduct(const Vector v1, const Vector v2) { return (Vector){-v1.z * v2.y + v1.y * v2.z, v1.z * v2.x - v1.x * v2.z, -v1.y * v2.x + v1.x * v2.y}; }
Real VectorDotProduct(const Vector v1, const Vector v2) { return v1.x * v2.x + v1.y * v2.y + v1.z * v2.z; }
Real VectorEuclideanNorm(const Vector v) { return sqrtl(v.x * v.x + v.y * v.y + v.z * v.z); }
Vector VectorL2Normalization(const Vector v) {
Real norm = VectorEuclideanNorm(v);
return VectorScalarDivision(v, norm == 0 ? LDBL_MAX : norm);
}
Real VectorEuclideanDistance(const Vector v1, const Vector v2) { return sqrtl((v2.x - v1.x) * (v2.x - v1.x) + (v2.y - v1.y) * (v2.y - v1.y) + (v2.z - v1.z) * (v2.z - v1.z)); }
bool VectorInsideTriangle2D(const Vector v, const Vector v1, const Vector v2, const Vector v3) {
int8_t sign = v1.x * v2.y + v1.y * v3.x + v2.x * v3.y < v1.y * v2.x + v2.y * v3.x + v1.x * v3.y ? -1 : 1;
Real a = (v1.y * (v3.x - v.x) + v3.y * v.x - v3.x * v.y + v1.x * (-v3.y + v.y));
Real b = (v1.y * (v2.x - v.x) + v2.y * v.x - v2.x * v.y + v1.x * (-v2.y + v.y));
Real c = (v2.y * (v3.x - v.x) + v3.y * v.x - v3.x * v.y + v2.x * (-v3.y + v.y));
return a * sign > 0 && b * sign < 0 && c * sign < 0;
}
Vector VectorTriangleNormal(const Vector v1, const Vector v2, const Vector v3) { return VectorL2Normalization(VectorCrossProduct(VectorSubtraction(v2, v1), VectorSubtraction(v3, v1))); }
Vector VectorTriangleCenterOfGravity(const Vector v1, const Vector v2, const Vector v3) { return VectorScalarDivision(VectorAddition(v1, VectorAddition(v2, v3)), 3); }
/**
* https://codeplea.com/triangular-interpolation
* https://en.wikipedia.org/wiki/Barycentric_coordinate_system
* @param v
* @param v1
* @param v2
* @param v3
* @return
*/
Vector VectorBarycentricCoordinateWeight(const Vector v, const Vector v1, const Vector v2, const Vector v3) {
Real w1 = -((-v2.x * v.y + v3.x * v.y + v.x * v2.y - v3.x * v2.y - v.x * v3.y + v2.x * v3.y) / (v2.x * v1.y - v3.x * v1.y - v1.x * v2.y + v3.x * v2.y + v1.x * v3.y - v2.x * v3.y));
Real w2 = -((v1.x * v.y - v3.x * v.y - v.x * v1.y + v3.x * v1.y + v.x * v3.y - v1.x * v3.y) / (v2.x * v1.y - v3.x * v1.y - v1.x * v2.y + v3.x * v2.y + v1.x * v3.y - v2.x * v3.y));
Real w3 = -((-v1.x * v.y + v2.x * v.y + v.x * v1.y - v2.x * v1.y - v.x * v2.y + v1.x * v2.y) / (v2.x * v1.y - v3.x * v1.y - v1.x * v2.y + v3.x * v2.y + v1.x * v3.y - v2.x * v3.y));
return V(w1, w2, w3);
}
Vector VectorConfine(const Vector v, Real min, Real max) { return V(CONFINE(v.x, min, max), CONFINE(v.y, min, max), CONFINE(v.z, min, max)); }