-
Notifications
You must be signed in to change notification settings - Fork 78
/
Copy pathchapter17.m
67 lines (52 loc) · 1.86 KB
/
chapter17.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
%% Analyzing Neural Time Series Data
% Matlab code for Chapter 17
% Mike X Cohen
%
% This code accompanies the book, titled "Analyzing Neural Time Series Data"
% (MIT Press). Using the code without following the book may lead to confusion,
% incorrect data analyses, and misinterpretations of results.
% Mike X Cohen assumes no responsibility for inappropriate or incorrect use of this code.
%% load data
load sampleEEGdata
%% figure 17.1
num_frex = 6;
frex = logspace(log10(4),log10(30),num_frex);
s = 6./(2*pi*frex);
time = -1:1/EEG.srate:1;
% note that you don't need the wavelet itself, you need the FFT of the wavelet
mwaves = zeros(num_frex,length(time));
swaves = zeros(num_frex,length(time));
for fi = 1:num_frex
% Create Morlet wavelets and s-transforms. Note that scaling factors
% are omitted to focus on the shape of the function.
mwaves(fi,:) = exp(2*1i*pi*frex(fi).*time) .* exp(-time.^2./(2*(s(fi)^2)));
swaves(fi,:) = exp(2*1i*pi*frex(fi).*time) .* exp(-time.^2.*frex(fi)^2/2);
end
time = -1:1/EEG.srate:1;
n_wavelet = length(time);
n_data = EEG.pnts*EEG.trials;
n_conv = n_wavelet+n_data-1;
half_wave = (length(time)-1)/2;
eegfft = fft(reshape(EEG.data(64,:,:),1,EEG.pnts*EEG.trials),n_conv);
% convolution
eegconv = ifft(fft(mwaves(5,:),n_conv).*eegfft);
eegconv = eegconv(half_wave+1:end-half_wave);
% reshape to time X trials
eegpower = log10(abs(reshape(eegconv,EEG.pnts,EEG.trials)).^2);
figure
plot(EEG.times,eegpower(:,50))
set(gca,'xlim',[-400 1200])
threshold = prctile(eegpower(:),95);
hold on
plot(get(gca,'xlim'),[threshold threshold],'k')
title([ 'power at electrode ' EEG.chanlocs(64).labels ' at ' num2str(frex(5)) ' Hz' ])
%% figure 17.2
figure
for i=1:num_frex
subplot(2,3,i)
plot(time,real(mwaves(i,:)))
hold on
plot(time,real(swaves(i,:)),'r.')
title([ num2str(frex(i)) ' Hz' ])
end
%% end.