-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathattn_fwd_autotune.ttir
252 lines (225 loc) · 14.1 KB
/
attn_fwd_autotune.ttir
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
#pragma autotune BLOCK_SIZE_M {128, 256} default 128
#pragma autotune BLOCK_SIZE_N {128, 256} default 128
#pragma autotune intrinsic num_warps {4, 8} default 4
#pragma autotune intrinsic num_stages {1, 2, 3, 4, 5, 6, 7, 8} default 2
// this is more a compile time constant, but there is no #pragma constant yet...
#pragma autotune HEAD_DIM {64} default 64
// we still have to allocate 3 * per each arg. to simulate split with jumpy stride access patterns in the kernel
// 48 = batch size
// 1024 = seq len
// 12 = num heads
// 64 head dim
// 2 = sizeof(float16)
#pragma argument 0 ptr cuMalloc(3 * 48 * 1024 * 12 * 64 * 2)
#pragma argument 1 ptr cuMalloc(3 * 48 * 1024 * 12 * 64 * 2)
#pragma argument 2 ptr cuMalloc(3 * 48 * 1024 * 12 * 64 * 2)
#pragma argument 3 ptr cuMalloc(48 * 1024 * 12 * 64 * 2)
#pragma argument 4 ptr cuMalloc(48 * 12 * 1024 * 2)
// this means 1.0f / sqrt(64*12) when interpreted as float
#pragma argument 5 i32 1024707898
// qstride 0, 2, 1
#pragma argument 6 i32 2359296
#pragma argument 7 i32 64
#pragma argument 8 i32 2304
// kstride 0, 2, 1
#pragma argument 9 i32 2359296
#pragma argument 10 i32 64
#pragma argument 11 i32 2304
// vstride 0, 2, 1
#pragma argument 12 i32 2359296
#pragma argument 13 i32 64
#pragma argument 14 i32 2304
// bias strides
#pragma argument 15 i32 0
#pragma argument 16 i32 0
#pragma argument 17 i32 0
// output strides
#pragma argument 18 i32 786432
#pragma argument 19 i32 64
#pragma argument 20 i32 768
// nheads
#pragma argument 21 i32 12
// seq length q
#pragma argument 22 i32 1024
// seq length k
#pragma argument 23 i32 1024
// seq length q rounded
#pragma argument 24 i32 1024
// n_embed
#pragma argument 25 i32 (12*64)
// cache key dummy 1
#pragma argument 26 i32 32
// cache key dummy 2
#pragma argument 27 i32 32
#pragma launch attn_fwd_kernel
// seq len / block_m
#pragma grid x (1024/${BLOCK_SIZE_M})
// batch * n_heads
#pragma grid y (48 * 12)
module {
tt.func public @attn_fwd_kernel(%arg0: !tt.ptr<f16> {tt.divisibility = 16 : i32},
%arg1: !tt.ptr<f16> {tt.divisibility = 16 : i32},
%arg2: !tt.ptr<f16> {tt.divisibility = 16 : i32},
%arg3: !tt.ptr<f16> {tt.divisibility = 16 : i32},
%arg4: !tt.ptr<f16> {tt.divisibility = 16 : i32},
%arg5: f32, %arg6: i32 {tt.divisibility = 16 : i32},
%arg7: i32 {tt.divisibility = 16 : i32},
%arg8: i32 {tt.divisibility = 16 : i32},
%arg9: i32 {tt.divisibility = 16 : i32},
%arg10: i32 {tt.divisibility = 16 : i32},
%arg11: i32 {tt.divisibility = 16 : i32},
%arg12: i32 {tt.divisibility = 16 : i32},
%arg13: i32 {tt.divisibility = 16 : i32},
%arg14: i32 {tt.divisibility = 16 : i32},
%arg15: i32 {tt.divisibility = 16 : i32},
%arg16: i32 {tt.divisibility = 16 : i32},
%arg17: i32 {tt.divisibility = 16 : i32},
%arg18: i32 {tt.divisibility = 16 : i32},
%arg19: i32 {tt.divisibility = 16 : i32},
%arg20: i32 {tt.divisibility = 16 : i32},
%arg21: i32,
%arg22: i32 {tt.divisibility = 16 : i32},
%arg23: i32 {tt.divisibility = 16 : i32},
%arg24: i32 {tt.divisibility = 16 : i32},
%arg25: i32 {tt.divisibility = 16 : i32},
%arg26: i32 {tt.divisibility = 16 : i32},
%arg27: i32 {tt.divisibility = 16 : i32}) attributes {noinline = false} {
%cst = arith.constant dense<0xFF800000> : tensor<${BLOCK_SIZE_M}xf32>
%cst_0 = arith.constant dense<0.000000e+00> : tensor<${BLOCK_SIZE_M}x${BLOCK_SIZE_N}xf32>
%c128_i32 = arith.constant ${BLOCK_SIZE_N} : i32
%c0_i32 = arith.constant 0 : i32
%cst_1 = arith.constant dense<0.000000e+00> : tensor<${BLOCK_SIZE_M}x${HEAD_DIM}xf16>
%cst_2 = arith.constant dense<0xFF800000> : tensor<${BLOCK_SIZE_M}x${BLOCK_SIZE_N}xf32>
%cst_3 = arith.constant dense<0.000000e+00> : tensor<${BLOCK_SIZE_M}x${BLOCK_SIZE_N}xf16>
%c1_i32 = arith.constant 1 : i32
%c256_i32 = arith.constant ${BLOCK_SIZE_M} : i32
%0 = tt.get_program_id x : i32
%1 = tt.get_program_id y : i32
%2 = arith.divsi %1, %arg21 : i32
%3 = arith.remsi %1, %arg21 : i32
%4 = arith.muli %0, %c256_i32 : i32
%5 = tt.make_range {end = ${BLOCK_SIZE_M} : i32, start = 0 : i32} : tensor<${BLOCK_SIZE_M}xi32>
%6 = tt.splat %4 : i32 -> tensor<${BLOCK_SIZE_M}xi32>
%7 = arith.addi %6, %5 : tensor<${BLOCK_SIZE_M}xi32>
%8 = tt.make_range {end = ${BLOCK_SIZE_N} : i32, start = 0 : i32} : tensor<${BLOCK_SIZE_N}xi32>
%9 = tt.make_range {end = ${HEAD_DIM} : i32, start = 0 : i32} : tensor<${HEAD_DIM}xi32>
%10 = arith.muli %2, %arg6 : i32
%11 = tt.addptr %arg0, %10 : !tt.ptr<f16>, i32
%12 = arith.muli %3, %arg7 : i32
%13 = tt.addptr %11, %12 : !tt.ptr<f16>, i32
%14 = tt.expand_dims %7 {axis = 1 : i32} : tensor<${BLOCK_SIZE_M}xi32> -> tensor<${BLOCK_SIZE_M}x1xi32>
%15 = tt.splat %arg8 : i32 -> tensor<${BLOCK_SIZE_M}x1xi32>
%16 = arith.muli %14, %15 : tensor<${BLOCK_SIZE_M}x1xi32>
%17 = tt.expand_dims %9 {axis = 0 : i32} : tensor<${HEAD_DIM}xi32> -> tensor<1x${HEAD_DIM}xi32>
%18 = tt.broadcast %16 : tensor<${BLOCK_SIZE_M}x1xi32> -> tensor<${BLOCK_SIZE_M}x${HEAD_DIM}xi32>
%19 = tt.broadcast %17 : tensor<1x${HEAD_DIM}xi32> -> tensor<${BLOCK_SIZE_M}x${HEAD_DIM}xi32>
%20 = arith.addi %18, %19 : tensor<${BLOCK_SIZE_M}x${HEAD_DIM}xi32>
%21 = tt.splat %13 : !tt.ptr<f16> -> tensor<${BLOCK_SIZE_M}x${HEAD_DIM}x!tt.ptr<f16>>
%22 = tt.addptr %21, %20 : tensor<${BLOCK_SIZE_M}x${HEAD_DIM}x!tt.ptr<f16>>, tensor<${BLOCK_SIZE_M}x${HEAD_DIM}xi32>
%23 = arith.muli %2, %arg9 : i32
%24 = tt.addptr %arg1, %23 : !tt.ptr<f16>, i32
%25 = arith.muli %3, %arg10 : i32
%26 = tt.addptr %24, %25 : !tt.ptr<f16>, i32
%27 = tt.expand_dims %8 {axis = 1 : i32} : tensor<${BLOCK_SIZE_N}xi32> -> tensor<${BLOCK_SIZE_N}x1xi32>
%28 = tt.splat %arg11 : i32 -> tensor<${BLOCK_SIZE_N}x1xi32>
%29 = arith.muli %27, %28 : tensor<${BLOCK_SIZE_N}x1xi32>
%30 = tt.broadcast %29 : tensor<${BLOCK_SIZE_N}x1xi32> -> tensor<${BLOCK_SIZE_N}x${HEAD_DIM}xi32>
%31 = tt.broadcast %17 : tensor<1x${HEAD_DIM}xi32> -> tensor<${BLOCK_SIZE_N}x${HEAD_DIM}xi32>
%32 = arith.addi %30, %31 : tensor<${BLOCK_SIZE_N}x${HEAD_DIM}xi32>
%33 = tt.splat %26 : !tt.ptr<f16> -> tensor<${BLOCK_SIZE_N}x${HEAD_DIM}x!tt.ptr<f16>>
%34 = tt.addptr %33, %32 : tensor<${BLOCK_SIZE_N}x${HEAD_DIM}x!tt.ptr<f16>>, tensor<${BLOCK_SIZE_N}x${HEAD_DIM}xi32>
%35 = arith.muli %2, %arg12 : i32
%36 = tt.addptr %arg2, %35 : !tt.ptr<f16>, i32
%37 = arith.muli %3, %arg13 : i32
%38 = tt.addptr %36, %37 : !tt.ptr<f16>, i32
%39 = tt.splat %arg14 : i32 -> tensor<${BLOCK_SIZE_N}x1xi32>
%40 = arith.muli %27, %39 : tensor<${BLOCK_SIZE_N}x1xi32>
%41 = tt.broadcast %40 : tensor<${BLOCK_SIZE_N}x1xi32> -> tensor<${BLOCK_SIZE_N}x${HEAD_DIM}xi32>
%42 = arith.addi %41, %31 : tensor<${BLOCK_SIZE_N}x${HEAD_DIM}xi32>
%43 = tt.splat %38 : !tt.ptr<f16> -> tensor<${BLOCK_SIZE_N}x${HEAD_DIM}x!tt.ptr<f16>>
%44 = tt.addptr %43, %42 : tensor<${BLOCK_SIZE_N}x${HEAD_DIM}x!tt.ptr<f16>>, tensor<${BLOCK_SIZE_N}x${HEAD_DIM}xi32>
%45 = tt.load %22 : tensor<${BLOCK_SIZE_M}x${HEAD_DIM}x!tt.ptr<f16>>
%46 = arith.addi %0, %c1_i32 : i32
%47 = arith.muli %46, %c256_i32 : i32
%48 = arith.minsi %47, %arg23 : i32
%49 = tt.broadcast %14 : tensor<${BLOCK_SIZE_M}x1xi32> -> tensor<${BLOCK_SIZE_M}x${BLOCK_SIZE_N}xi32>
%50 = tt.splat %arg5 : f32 -> tensor<${BLOCK_SIZE_M}xf32>
%51 = tt.splat %arg5 : f32 -> tensor<${BLOCK_SIZE_M}x${BLOCK_SIZE_N}xf32>
%52:3 = scf.for %arg28 = %c0_i32 to %48 step %c128_i32 iter_args(%arg29 = %cst_1, %arg30 = %cst, %arg31 = %cst) -> (tensor<${BLOCK_SIZE_M}x${HEAD_DIM}xf16>, tensor<${BLOCK_SIZE_M}xf32>, tensor<${BLOCK_SIZE_M}xf32>) : i32 {
%75 = arith.muli %arg28, %arg11 : i32
%76 = tt.splat %75 : i32 -> tensor<${BLOCK_SIZE_N}x${HEAD_DIM}xi32>
%77 = tt.addptr %34, %76 : tensor<${BLOCK_SIZE_N}x${HEAD_DIM}x!tt.ptr<f16>>, tensor<${BLOCK_SIZE_N}x${HEAD_DIM}xi32>
%78 = tt.load %77 : tensor<${BLOCK_SIZE_N}x${HEAD_DIM}x!tt.ptr<f16>>
%79 = tt.trans %78 {order = array<i32: 1, 0>} : tensor<${BLOCK_SIZE_N}x${HEAD_DIM}xf16> -> tensor<${HEAD_DIM}x${BLOCK_SIZE_N}xf16>
%80 = tt.dot %45, %79, %cst_3, inputPrecision = tf32 : tensor<${BLOCK_SIZE_M}x${HEAD_DIM}xf16> * tensor<${HEAD_DIM}x${BLOCK_SIZE_N}xf16> -> tensor<${BLOCK_SIZE_M}x${BLOCK_SIZE_N}xf16>
%81 = tt.splat %arg28 : i32 -> tensor<${BLOCK_SIZE_N}xi32>
%82 = arith.addi %81, %8 : tensor<${BLOCK_SIZE_N}xi32>
%83 = tt.expand_dims %82 {axis = 0 : i32} : tensor<${BLOCK_SIZE_N}xi32> -> tensor<1x${BLOCK_SIZE_N}xi32>
%84 = tt.broadcast %83 : tensor<1x${BLOCK_SIZE_N}xi32> -> tensor<${BLOCK_SIZE_M}x${BLOCK_SIZE_N}xi32>
%85 = arith.cmpi sge, %49, %84 : tensor<${BLOCK_SIZE_M}x${BLOCK_SIZE_N}xi32>
%86 = arith.select %85, %cst_0, %cst_2 : tensor<${BLOCK_SIZE_M}x${BLOCK_SIZE_N}xi1>, tensor<${BLOCK_SIZE_M}x${BLOCK_SIZE_N}xf32>
%87 = arith.extf %80 : tensor<${BLOCK_SIZE_M}x${BLOCK_SIZE_N}xf16> to tensor<${BLOCK_SIZE_M}x${BLOCK_SIZE_N}xf32>
%88 = arith.addf %87, %86 : tensor<${BLOCK_SIZE_M}x${BLOCK_SIZE_N}xf32>
%89 = "tt.reduce"(%88) <{axis = 1 : i32}> ({
^bb0(%arg32: f32 loc(unknown), %arg33: f32 loc(unknown)):
%115 = arith.maxnumf %arg32, %arg33 : f32
tt.reduce.return %115 : f32
}) : (tensor<${BLOCK_SIZE_M}x${BLOCK_SIZE_N}xf32>) -> tensor<${BLOCK_SIZE_M}xf32>
%90 = arith.mulf %89, %50 : tensor<${BLOCK_SIZE_M}xf32>
%91 = arith.maxnumf %90, %arg31 : tensor<${BLOCK_SIZE_M}xf32>
%92 = arith.mulf %88, %51 : tensor<${BLOCK_SIZE_M}x${BLOCK_SIZE_N}xf32>
%93 = tt.expand_dims %91 {axis = 1 : i32} : tensor<${BLOCK_SIZE_M}xf32> -> tensor<${BLOCK_SIZE_M}x1xf32>
%94 = tt.broadcast %93 : tensor<${BLOCK_SIZE_M}x1xf32> -> tensor<${BLOCK_SIZE_M}x${BLOCK_SIZE_N}xf32>
%95 = arith.subf %92, %94 : tensor<${BLOCK_SIZE_M}x${BLOCK_SIZE_N}xf32>
%96 = math.exp %95 : tensor<${BLOCK_SIZE_M}x${BLOCK_SIZE_N}xf32>
%97 = "tt.reduce"(%96) <{axis = 1 : i32}> ({
^bb0(%arg32: f32 loc(unknown), %arg33: f32 loc(unknown)):
%115 = arith.addf %arg32, %arg33 : f32
tt.reduce.return %115 : f32
}) : (tensor<${BLOCK_SIZE_M}x${BLOCK_SIZE_N}xf32>) -> tensor<${BLOCK_SIZE_M}xf32>
%98 = arith.subf %arg30, %91 : tensor<${BLOCK_SIZE_M}xf32>
%99 = math.exp %98 : tensor<${BLOCK_SIZE_M}xf32>
%100 = tt.expand_dims %99 {axis = 1 : i32} : tensor<${BLOCK_SIZE_M}xf32> -> tensor<${BLOCK_SIZE_M}x1xf32>
%101 = arith.truncf %100 : tensor<${BLOCK_SIZE_M}x1xf32> to tensor<${BLOCK_SIZE_M}x1xf16>
%102 = tt.broadcast %101 : tensor<${BLOCK_SIZE_M}x1xf16> -> tensor<${BLOCK_SIZE_M}x${HEAD_DIM}xf16>
%103 = arith.mulf %arg29, %102 : tensor<${BLOCK_SIZE_M}x${HEAD_DIM}xf16>
%104 = arith.muli %arg28, %arg14 : i32
%105 = tt.splat %104 : i32 -> tensor<${BLOCK_SIZE_N}x${HEAD_DIM}xi32>
%106 = tt.addptr %44, %105 : tensor<${BLOCK_SIZE_N}x${HEAD_DIM}x!tt.ptr<f16>>, tensor<${BLOCK_SIZE_N}x${HEAD_DIM}xi32>
%107 = tt.load %106 : tensor<${BLOCK_SIZE_N}x${HEAD_DIM}x!tt.ptr<f16>>
%108 = arith.truncf %96 : tensor<${BLOCK_SIZE_M}x${BLOCK_SIZE_N}xf32> to tensor<${BLOCK_SIZE_M}x${BLOCK_SIZE_N}xf16>
%109 = tt.dot %108, %107, %103, inputPrecision = tf32 : tensor<${BLOCK_SIZE_M}x${BLOCK_SIZE_N}xf16> * tensor<${BLOCK_SIZE_N}x${HEAD_DIM}xf16> -> tensor<${BLOCK_SIZE_M}x${HEAD_DIM}xf16>
%110 = arith.subf %arg31, %91 : tensor<${BLOCK_SIZE_M}xf32>
%111 = math.exp %110 : tensor<${BLOCK_SIZE_M}xf32>
%112 = arith.addf %111, %97 : tensor<${BLOCK_SIZE_M}xf32>
%113 = math.log %112 : tensor<${BLOCK_SIZE_M}xf32>
%114 = arith.addf %91, %113 : tensor<${BLOCK_SIZE_M}xf32>
scf.yield %109, %91, %114 : tensor<${BLOCK_SIZE_M}x${HEAD_DIM}xf16>, tensor<${BLOCK_SIZE_M}xf32>, tensor<${BLOCK_SIZE_M}xf32>
} {tt.divisibility_arg1 = dense<128> : tensor<1xi32>}
%53 = arith.subf %52#1, %52#2 : tensor<${BLOCK_SIZE_M}xf32>
%54 = math.exp %53 : tensor<${BLOCK_SIZE_M}xf32>
%55 = tt.expand_dims %54 {axis = 1 : i32} : tensor<${BLOCK_SIZE_M}xf32> -> tensor<${BLOCK_SIZE_M}x1xf32>
%56 = tt.broadcast %55 : tensor<${BLOCK_SIZE_M}x1xf32> -> tensor<${BLOCK_SIZE_M}x${HEAD_DIM}xf32>
%57 = arith.extf %52#0 : tensor<${BLOCK_SIZE_M}x${HEAD_DIM}xf16> to tensor<${BLOCK_SIZE_M}x${HEAD_DIM}xf32>
%58 = arith.mulf %57, %56 : tensor<${BLOCK_SIZE_M}x${HEAD_DIM}xf32>
%59 = arith.muli %1, %arg24 : i32
%60 = tt.addptr %arg4, %59 : !tt.ptr<f16>, i32
%61 = tt.splat %60 : !tt.ptr<f16> -> tensor<${BLOCK_SIZE_M}x!tt.ptr<f16>>
%62 = tt.addptr %61, %7 : tensor<${BLOCK_SIZE_M}x!tt.ptr<f16>>, tensor<${BLOCK_SIZE_M}xi32>
%63 = arith.truncf %52#2 : tensor<${BLOCK_SIZE_M}xf32> to tensor<${BLOCK_SIZE_M}xf16>
tt.store %62, %63 : tensor<${BLOCK_SIZE_M}x!tt.ptr<f16>>
%64 = arith.muli %2, %arg18 : i32
%65 = tt.addptr %arg3, %64 : !tt.ptr<f16>, i32
%66 = arith.muli %3, %arg19 : i32
%67 = tt.addptr %65, %66 : !tt.ptr<f16>, i32
%68 = tt.splat %arg20 : i32 -> tensor<${BLOCK_SIZE_M}x1xi32>
%69 = arith.muli %14, %68 : tensor<${BLOCK_SIZE_M}x1xi32>
%70 = tt.broadcast %69 : tensor<${BLOCK_SIZE_M}x1xi32> -> tensor<${BLOCK_SIZE_M}x${HEAD_DIM}xi32>
%71 = arith.addi %70, %19 : tensor<${BLOCK_SIZE_M}x${HEAD_DIM}xi32>
%72 = tt.splat %67 : !tt.ptr<f16> -> tensor<${BLOCK_SIZE_M}x${HEAD_DIM}x!tt.ptr<f16>>
%73 = tt.addptr %72, %71 : tensor<${BLOCK_SIZE_M}x${HEAD_DIM}x!tt.ptr<f16>>, tensor<${BLOCK_SIZE_M}x${HEAD_DIM}xi32>
%74 = arith.truncf %58 : tensor<${BLOCK_SIZE_M}x${HEAD_DIM}xf32> to tensor<${BLOCK_SIZE_M}x${HEAD_DIM}xf16>
tt.store %73, %74 : tensor<${BLOCK_SIZE_M}x${HEAD_DIM}x!tt.ptr<f16>>
tt.return
}
}