-
Notifications
You must be signed in to change notification settings - Fork 10
/
sigma.ml
71 lines (62 loc) · 2.53 KB
/
sigma.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
open Testutil.Repl
let () =
run @@ fun () ->
def "Σ" "(A : Type) → (A → Type) → Type" "A B ↦ sig ( fst : A, snd : B fst)";
def "pair" "(A:Type) → (B : A → Type) → (x:A) → B x → Σ A B" "A B a b ↦ (a,b)";
assume "A" "Type";
assume "B" "A → Type";
(* Pairs and tuples have the correct type and are equal to each other *)
assume "a" "A";
assume "b" "B a";
def "ab" "Σ A B" "(a,b)";
def "ab'" "Σ A B" "pair A B a b";
equal_at "ab" "ab'" "Σ A B";
(* Projections have the correct type *)
assume "x" "Σ A B";
def "x1" "A" "x .fst";
def "x2" "B x1" "x .snd";
(* Projections of pairs and tuples compute *)
equal_at "ab .fst" "a" "A";
equal_at "ab .snd" "b" "B a";
equal_at "ab' .fst" "a" "A";
equal_at "ab' .snd" "b" "B a";
(* Projections satisfy eta-conversion for both pairs and tupls *)
def "x'" "Σ A B" "pair A B (x .fst) (x .snd)";
equal_at "x" "x'" "Σ A B";
def "x''" "Σ A B" "(x .fst, x .snd)";
equal_at "x" "x''" "Σ A B";
(* Identifications can be paired to give an identification of pairs *)
assume "a0" "A";
assume "b0" "B a0";
assume "a1" "A";
assume "b1" "B a1";
assume "a2" "Id A a0 a1";
assume "b2" "Id B a0 a1 a2 b0 b1";
def "ab2" "Id (Σ A B) (a0,b0) (a1,b1)" "(a2,b2)";
(* As for function-types, identity types of sigma-types are invariant under eta-conversion *)
equal_at "Id (Σ A B) (a0,b0) (a1,b1)" "Id (Σ A B) (pair A B a0 b0) (a1,b1)" "Type";
equal_at "(a2,b2)" "refl pair A A (refl A) B B (refl B) a0 a1 a2 b0 b1 b2"
"Id (Σ A B) (a0,b0) (a1,b1)";
(* And can be projected back out again to the inputs *)
equal_at "ab2 .fst" "a2" "Id A a0 a1";
equal_at "ab2 .snd" "b2" "Id B a0 a1 a2 b0 b1";
(* Refl commutes with pairing *)
equal_at "refl (pair A B a b)" "(refl a, refl b)" "Id (Σ A B) ab ab";
equal_at "refl ((a,b) : Σ A B)" "(refl a, refl b)" "Id (Σ A B) ab ab";
(* Sigmas can store identities and squares, and symmetry can act on them *)
assume "X" "Type";
assume "x00" "X";
assume "x01" "X";
assume "x02" "Id X x00 x01";
assume "x10" "X";
assume "x11" "X";
assume "x12" "Id X x10 x11";
assume "x20" "Id X x00 x10";
assume "x21" "Id X x01 x11";
assume "x22" "Id ((x y ↦ Id X x y) : X → X → Type) x00 x01 x02 x10 x11 x12 x20 x21";
assume "Y" "Type";
assume "y" "Y";
assume "s" "Σ (Id ((x y ↦ Id X x y) : X → X → Type) x00 x01 x02 x10 x11 x12 x20 x21) (_ ↦ Y)";
Testutil.Mcp.unsynth "sym s";
def "s1s" "Id ((x y ↦ Id X x y) : X → X → Type) x00 x10 x20 x01 x11 x21 x02 x12" "sym (s .fst)";
()