-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathasync_learner.py
709 lines (602 loc) · 30 KB
/
async_learner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
# -*- coding: utf-8 -*-
import logging
import sys
import time
from threading import Thread
import datetime
import numpy as np
import tensorflow as tf
from tqdm import trange
from vizdoom import SignalException, ViZDoomUnexpectedExitException
import networks
import random
from util import sec_to_str, threadsafe_print, ensure_parent_directories, create_directory
from util.coloring import red, green, blue, yellow
from util.logger import log
from util.misc import setup_vector_summaries, string_heatmap
from vizdoom_wrapper import VizdoomWrapper
class A3CLearner(Thread):
def __init__(self,
thread_index=0,
game=None,
model_savefile=None,
network_class="ACLstmNet",
global_steps_counter=None,
scenario_tag=None,
run_id_string=None,
session=None,
tf_logdir=None,
global_network=None,
optimizer=None,
learning_rate=None,
test_only=False,
test_interval=1,
write_summaries=True,
enable_progress_bar=True,
deterministic_testing=True,
save_interval=1,
writer_max_queue=10,
writer_flush_secs=120,
gamma_compensation=False,
figar_gamma=False,
gamma=0.99,
show_heatmaps=True,
**settings):
super(A3CLearner, self).__init__()
log("Creating actor-learner #{}.".format(thread_index))
self.thread_index = thread_index
self._global_steps_counter = global_steps_counter
self.write_summaries = write_summaries
self.save_interval = save_interval
self.enable_progress_bar = enable_progress_bar
self._model_savefile = None
self._train_writer = None
self._test_writer = None
self._summaries = None
self._session = session
self.deterministic_testing = deterministic_testing
self.local_steps = 0
# TODO epoch as tf variable?
self._epoch = 1
self.train_scores = []
self.train_actions = []
self.train_frameskips = []
self.show_heatmaps = show_heatmaps
self.test_interval = test_interval
self.local_steps_per_epoch = settings["local_steps_per_epoch"]
self._run_tests = settings["test_episodes_per_epoch"] > 0 and settings["run_tests"]
self.test_episodes_per_epoch = settings["test_episodes_per_epoch"]
self._epochs = np.float32(settings["epochs"])
self.max_remembered_steps = settings["max_remembered_steps"]
assert not (gamma_compensation and figar_gamma)
gamma = np.float32(gamma)
if gamma_compensation:
self.scale_gamma = lambda fskip: ((1 - gamma ** fskip) / (1 - gamma), gamma ** fskip)
elif figar_gamma:
self.scale_gamma = lambda fskip: (1.0, gamma ** fskip)
else:
self.scale_gamma = lambda _: (1.0, gamma)
if self.write_summaries and thread_index == 0 and not test_only:
assert tf_logdir is not None
self.run_id_string = run_id_string
self.tf_models_path = settings["models_path"]
create_directory(tf_logdir)
if self.tf_models_path is not None:
create_directory(self.tf_models_path)
if game is None:
self.doom_wrapper = VizdoomWrapper(**settings)
else:
self.doom_wrapper = game
misc_len = self.doom_wrapper.misc_len
img_shape = self.doom_wrapper.img_shape
self.use_misc = self.doom_wrapper.use_misc
self.actions_num = self.doom_wrapper.actions_num
self.local_network = getattr(networks, network_class)(actions_num=self.actions_num, img_shape=img_shape,
misc_len=misc_len,
thread=thread_index, **settings)
if not test_only:
self.learning_rate = learning_rate
# TODO check gate_gradients != Optimizer.GATE_OP
grads_and_vars = optimizer.compute_gradients(self.local_network.ops.loss,
var_list=self.local_network.get_params())
grads, local_vars = zip(*grads_and_vars)
grads_and_global_vars = zip(grads, global_network.get_params())
self.train_op = optimizer.apply_gradients(grads_and_global_vars, global_step=tf.train.get_global_step())
self.global_network = global_network
self.local_network.prepare_sync_op(global_network)
if self.thread_index == 0 and not test_only:
self._model_savefile = model_savefile
if self.write_summaries:
self.actions_placeholder = tf.placeholder(tf.int32, None)
self.frameskips_placeholder = tf.placeholder(tf.int32, None)
self.scores_placeholder, summaries = setup_vector_summaries(scenario_tag + "/scores")
# TODO remove scenario_tag from histograms
a_histogram = tf.summary.histogram(scenario_tag + "/actions", self.actions_placeholder)
fs_histogram = tf.summary.histogram(scenario_tag + "/frameskips", self.frameskips_placeholder)
score_histogram = tf.summary.histogram(scenario_tag + "/scores", self.scores_placeholder)
lr_summary = tf.summary.scalar(scenario_tag + "/learning_rate", self.learning_rate)
summaries.append(lr_summary)
summaries.append(a_histogram)
summaries.append(fs_histogram)
summaries.append(score_histogram)
self._summaries = tf.summary.merge(summaries)
self._train_writer = tf.summary.FileWriter("{}/{}/{}".format(tf_logdir, self.run_id_string, "train"),
flush_secs=writer_flush_secs, max_queue=writer_max_queue)
self._test_writer = tf.summary.FileWriter("{}/{}/{}".format(tf_logdir, self.run_id_string, "test"),
flush_secs=writer_flush_secs, max_queue=writer_max_queue)
def heatmap(self, actions, frameskips):
min_frameskip = np.min(frameskips)
max_frameskip = np.max(frameskips)
fs_values = range(min_frameskip, max_frameskip + 1)
a_labels = [str(a) for a in self.doom_wrapper.actions]
mat = np.zeros((self.actions_num, (len(fs_values))))
for f, a in zip(frameskips, actions):
mat[a, f - min_frameskip] += 1
return string_heatmap(mat, fs_values, a_labels)
@staticmethod
def choose_best_index(policy, deterministic=True):
if deterministic:
return np.argmax(policy)
r = random.random()
cummulative_sum = 0.0
for i, p in enumerate(policy):
cummulative_sum += p
if r <= cummulative_sum:
return i
return len(policy) - 1
def make_training_step(self):
states_img = []
states_misc = []
actions = []
rewards_reversed = []
Rs = []
self._session.run(self.local_network.ops.sync)
initial_network_state = None
if self.local_network.has_state():
initial_network_state = self.local_network.get_current_network_state()
terminal = None
steps_performed = 0
for _ in range(self.max_remembered_steps):
steps_performed += 1
current_state = self.doom_wrapper.get_current_state()
policy = self.local_network.get_policy(self._session, current_state)
action_index = A3CLearner.choose_best_index(policy, deterministic=False)
states_img.append(current_state[0])
states_misc.append(current_state[1])
actions.append(action_index)
reward = self.doom_wrapper.make_action(action_index)
terminal = self.doom_wrapper.is_terminal()
rewards_reversed.insert(0, reward)
self.local_steps += 1
if terminal:
if self.thread_index == 0:
self.train_scores.append(self.doom_wrapper.get_total_reward())
self.doom_wrapper.reset()
if self.local_network.has_state():
self.local_network.reset_state()
break
self.train_actions += actions
self.train_frameskips += [self.doom_wrapper.frameskip] * len(actions)
if terminal:
R = 0.0
else:
R = self.local_network.get_value(self._session, self.doom_wrapper.get_current_state())
# #TODO this could be handles smarter ....
for ri in rewards_reversed:
scale, gamma = self.scale_gamma(self.doom_wrapper.frameskip)
R = scale * ri + gamma * R
Rs.insert(0, R)
train_op_feed_dict = {
self.local_network.vars.state_img: states_img,
self.local_network.vars.a: actions,
self.local_network.vars.R: Rs
}
if self.use_misc:
train_op_feed_dict[self.local_network.vars.state_misc] = states_misc
if self.local_network.has_state():
train_op_feed_dict[self.local_network.vars.initial_network_state] = initial_network_state
train_op_feed_dict[self.local_network.vars.sequence_length] = [len(actions)]
self._session.run(self.train_op, feed_dict=train_op_feed_dict)
return steps_performed
def run_episode(self, deterministic=True, return_stats=False):
self.doom_wrapper.reset()
if self.local_network.has_state():
self.local_network.reset_state()
actions = []
frameskips = []
rewards = []
while not self.doom_wrapper.is_terminal():
current_state = self.doom_wrapper.get_current_state()
action_index, frameskip = self._get_best_action(self._session, current_state, deterministic=deterministic)
reward = self.doom_wrapper.make_action(action_index, frameskip)
if return_stats:
actions.append(action_index)
if frameskip is None:
frameskip = self.doom_wrapper.frameskip
frameskips.append(frameskip)
rewards.append(reward)
total_reward = self.doom_wrapper.get_total_reward()
if return_stats:
return total_reward, actions, frameskips, rewards
else:
return total_reward
def test(self, episodes_num=None, deterministic=True):
if episodes_num is None:
episodes_num = self.test_episodes_per_epoch
test_start_time = time.time()
test_rewards = []
test_actions = []
test_frameskips = []
for _ in trange(episodes_num, desc="Testing", file=sys.stdout,
leave=False, disable=not self.enable_progress_bar):
total_reward, actions, frameskips, _ = self.run_episode(deterministic=deterministic, return_stats=True)
test_rewards.append(total_reward)
test_actions += actions
test_frameskips += frameskips
self.doom_wrapper.reset()
if self.local_network.has_state():
self.local_network.reset_state()
test_end_time = time.time()
test_duration = test_end_time - test_start_time
min_score = np.min(test_rewards)
max_score = np.max(test_rewards)
mean_score = np.mean(test_rewards)
score_std = np.std(test_rewards)
log(
"TEST: mean: {}, min: {}, max: {}, test time: {}".format(
green("{:0.3f}±{:0.2f}".format(mean_score, score_std)),
red("{:0.3f}".format(min_score)),
blue("{:0.3f}".format(max_score)),
sec_to_str(test_duration)))
return test_rewards, test_actions, test_frameskips
def _print_train_log(self, scores, overall_start_time, last_log_time, steps):
current_time = time.time()
mean_score = np.mean(scores)
score_std = np.std(scores)
min_score = np.min(scores)
max_score = np.max(scores)
elapsed_time = time.time() - overall_start_time
global_steps = self._global_steps_counter.get()
local_steps_per_sec = steps / (current_time - last_log_time)
global_steps_per_sec = global_steps / elapsed_time
global_mil_steps_per_hour = global_steps_per_sec * 3600 / 1000000.0
log(
"TRAIN: {}(GlobalSteps), {} episodes, mean: {}, min: {}, max: {}, "
"\nLocalSpd: {:.0f} STEPS/s GlobalSpd: "
"{} STEPS/s, {:.2f}M STEPS/hour, total elapsed time: {}".format(
global_steps,
len(scores),
green("{:0.3f}±{:0.2f}".format(mean_score, score_std)),
red("{:0.3f}".format(min_score)),
blue("{:0.3f}".format(max_score)),
local_steps_per_sec,
blue("{:.0f}".format(
global_steps_per_sec)),
global_mil_steps_per_hour,
sec_to_str(elapsed_time)
))
def run(self):
# TODO this method is ugly, make it nicer
try:
overall_start_time = time.time()
last_log_time = overall_start_time
local_steps_for_log = 0
while self._epoch <= self._epochs:
steps = self.make_training_step()
local_steps_for_log += steps
global_steps = self._global_steps_counter.inc(steps)
# Logs & tests
if self.local_steps_per_epoch * self._epoch <= self.local_steps:
self._epoch += 1
if self.thread_index == 0:
log("EPOCH {}".format(self._epoch - 1))
self._print_train_log(
self.train_scores, overall_start_time, last_log_time, local_steps_for_log)
run_test_this_epoch = ((self._epoch - 1) % self.test_interval) == 0
if self._run_tests and run_test_this_epoch:
test_scores, test_actions, test_frameskips = self.test(
deterministic=self.deterministic_testing)
if self.write_summaries:
train_summary = self._session.run(self._summaries,
{self.scores_placeholder: self.train_scores,
self.actions_placeholder: self.train_actions,
self.frameskips_placeholder: self.train_frameskips})
self._train_writer.add_summary(train_summary, global_steps)
if self._run_tests and run_test_this_epoch:
test_summary = self._session.run(self._summaries,
{self.scores_placeholder: test_scores,
self.actions_placeholder: test_actions,
self.frameskips_placeholder: test_frameskips})
self._test_writer.add_summary(test_summary, global_steps)
last_log_time = time.time()
local_steps_for_log = 0
log("Learning rate: {}".format(self._session.run(self.learning_rate)))
# Saves model
if self._epoch % self.save_interval == 0:
self.save_model()
now = datetime.datetime.now()
log("Time: {:2d}:{:02d}".format(now.hour, now.minute))
if self.show_heatmaps:
log("Train heatmaps:")
log(self.heatmap(self.train_actions, self.train_frameskips))
log("")
if run_test_this_epoch:
log("Test heatmaps:")
log(self.heatmap(test_actions, test_frameskips))
log("")
self.train_scores = []
self.train_actions = []
self.train_frameskips = []
threadsafe_print("Thread {} finished.".format(self.thread_index))
except (SignalException, ViZDoomUnexpectedExitException):
threadsafe_print(red("Thread #{} aborting(ViZDoom killed).".format(self.thread_index)))
def run_training(self, session):
self._session = session
self.start()
def save_model(self):
ensure_parent_directories(self._model_savefile)
log("Saving model to: {}".format(self._model_savefile))
saver = tf.train.Saver(self.local_network.get_params())
saver.save(self._session, self._model_savefile)
def load_model(self, session, savefile):
saver = tf.train.Saver(self.local_network.get_params())
log("Loading model from: {}".format(savefile))
saver.restore(session, savefile)
log("Loaded model.")
def _get_best_action(self, sess, state, deterministic=True):
policy = self.local_network.get_policy(sess, state)
action_index = self.choose_best_index(policy, deterministic=deterministic)
frameskip = None
return action_index, frameskip
class ADQNLearner(A3CLearner):
def __init__(self,
network_class="ADQNLstmNet",
global_target_network=None,
unfreeze_thread=False,
frozen_global_steps=40000,
initial_epsilon=1.0,
final_epsilon=0.1,
epsilon_decay_steps=10e06,
epsilon_decay_start_step=0,
**args):
super(ADQNLearner, self).__init__(network_class=network_class, **args)
self.global_target_network = global_target_network
self.unfreeze_thread = unfreeze_thread
if unfreeze_thread:
self.frozen_global_steps = frozen_global_steps
else:
self.frozen_global_steps = None
# Epsilon
# TODO randomize epsilon somehow
self.epsilon_decay_rate = (initial_epsilon - final_epsilon) / epsilon_decay_steps
self.epsilon_decay_start_step = epsilon_decay_start_step
self.initial_epsilon = initial_epsilon
self.final_epsilon = final_epsilon
def get_current_epsilon(self):
eps = self.initial_epsilon - (self.local_steps - self.epsilon_decay_start_step) * self.epsilon_decay_rate
return np.clip(eps, self.final_epsilon, 1.0)
def make_training_step(self):
states_img = []
states_misc = []
actions = []
rewards_reversed = []
target_qs = []
self._session.run(self.local_network.ops.sync)
initial_network_state = None
if self.local_network.has_state():
initial_network_state = self.local_network.get_current_network_state()
terminal = None
steps_performed = 0
for _ in range(self.max_remembered_steps):
steps_performed += 1
current_img, current_misc = self.doom_wrapper.get_current_state()
if random.random() <= self.get_current_epsilon():
action_index = np.random.randint(0, self.actions_num)
if self.local_network.has_state():
self.local_network.update_network_state(self._session, [current_img, current_misc])
else:
q_values = self.local_network.get_q_values(self._session, [current_img, current_misc]).flatten()
action_index = q_values.argmax()
states_img.append(current_img)
states_misc.append(current_misc)
actions.append(action_index)
reward = self.doom_wrapper.make_action(action_index)
terminal = self.doom_wrapper.is_terminal()
rewards_reversed.insert(0, reward)
self.local_steps += 1
if terminal:
if self.thread_index == 0:
self.train_scores.append(self.doom_wrapper.get_total_reward())
self.doom_wrapper.reset()
if self.local_network.has_state():
self.local_network.reset_state()
break
if terminal:
target_q = 0.0
else:
if self.global_network.has_state():
q2 = self.global_target_network.get_q_values(self._session,
self.doom_wrapper.get_current_state(),
False,
self.local_network.get_current_network_state())
else:
q2 = self.global_target_network.get_q_values(self._session,
self.doom_wrapper.get_current_state())
target_q = q2.max()
for ri in rewards_reversed:
target_q = ri + self.gamma * target_q
target_qs.insert(0, target_q)
# TODO delegate this to the network as train_batch(session, ...), maybe?
train_op_feed_dict = {
self.local_network.vars.state_img: states_img,
self.local_network.vars.a: actions,
self.local_network.vars.target_q: target_qs
}
if self.use_misc:
train_op_feed_dict[self.local_network.vars.state_misc] = states_misc
if self.local_network.has_state():
train_op_feed_dict[self.local_network.vars.initial_network_state] = initial_network_state
train_op_feed_dict[self.local_network.vars.sequence_length] = [len(actions)]
self._session.run(self.train_op, feed_dict=train_op_feed_dict)
return steps_performed
def run(self):
# TODO this method is ugly, make it nicer ...and it's the same as above.... really TODO!!
# Basically code copied from base class with unfreezing
try:
overall_start_time = time.time()
last_log_time = overall_start_time
local_steps_for_log = 0
next_target_update = self.frozen_global_steps
while self._epoch <= self._epochs:
steps = self.make_training_step()
local_steps_for_log += steps
global_steps = self._global_steps_counter.inc(steps)
# Updating target network:
if self.unfreeze_thread:
# TODO this check is dangerous
if global_steps >= next_target_update:
next_target_update += self.frozen_global_steps
if next_target_update <= global_steps:
# TODO use warn from the logger
logging.warning(yellow("Global steps ({}) <= next target update ({}).".format(
global_steps, next_target_update)))
self._session.run(self.global_network.ops.unfreeze)
# Logs & tests
if self.local_steps_per_epoch * self._epoch <= self.local_steps:
self._epoch += 1
if self.thread_index == 0:
self._print_train_log(self.train_scores, overall_start_time, last_log_time, local_steps_for_log)
if self._run_tests:
test_scores, actions, frameskips = self.test(deterministic=self.deterministic_testing)
if self.write_summaries:
train_summary = self._session.run(self._summaries,
{self.scores_placeholder: self.train_scores})
self._train_writer.add_summary(train_summary, global_steps)
if self._run_tests:
test_summary = self._session.run(self._summaries,
{self.scores_placeholder: test_scores})
self._test_writer.add_summary(test_summary, global_steps)
last_log_time = time.time()
local_steps_for_log = 0
log("Learning rate: {}".format(self._session.run(self.learning_rate)))
# Saves model
if self._epoch % self.save_interval == 0:
self.save_model()
log("")
self.train_scores = []
self.train_actions = []
self.train_frameskips = []
except (SignalException, ViZDoomUnexpectedExitException):
threadsafe_print(red("Thread #{} aborting(ViZDoom killed).".format(self.thread_index)))
def _get_best_action(self, sess, state, deterministic=True):
q = self.local_network.get_q_values(sess, state).flatten()
action_index = q.argmax()
frameskip = None
return action_index, frameskip
class FigarA3CLearner(A3CLearner):
def __init__(self,
dynamic_frameskips=None,
multi_frameskip=False,
cfigar=False,
**args):
if dynamic_frameskips is not None:
self.binomial_frameskip = False
if cfigar:
raise ValueError()
if isinstance(dynamic_frameskips, (list, tuple)):
self.frameskips = list(dynamic_frameskips)
elif isinstance(dynamic_frameskips, int):
self.frameskips = list(range(1, dynamic_frameskips + 1))
self.frameskips_indices = {f: i for i, f in enumerate(self.frameskips)}
elif not cfigar:
raise ValueError()
else:
self.binomial_frameskip = True
self.multi_frameskip = multi_frameskip
super(FigarA3CLearner, self).__init__(dynamic_frameskips=dynamic_frameskips,
multi_frameskip=multi_frameskip,
**args)
def make_training_step(self):
# TODO mostly coppied, just added frameskip, a bit wasteful (maybe merge it with basic learner after all...)
states_img = []
states_misc = []
actions = []
frameskips = []
rewards_reversed = []
Rs = []
self._session.run(self.local_network.ops.sync)
initial_network_state = None
if self.local_network.has_state():
initial_network_state = self.local_network.get_current_network_state()
terminal = None
steps_performed = 0
# TODO changed compared to base:
for _ in range(self.max_remembered_steps):
steps_performed += 1
current_state = self.doom_wrapper.get_current_state()
action_index, frameskip = self._get_best_action(self._session, current_state, deterministic=False)
if self.binomial_frameskip:
frameskips.append(frameskip)
# TODO maybe put non integer here also?
else:
frameskips.append(self.frameskips_indices[frameskip])
self.train_actions.append(action_index)
self.train_frameskips.append(frameskip)
reward = self.doom_wrapper.make_action(action_index, frameskip)
terminal = self.doom_wrapper.is_terminal()
rewards_reversed.insert(0, reward)
states_img.append(current_state[0])
states_misc.append(current_state[1])
actions.append(action_index)
# TODO end (and frameskip in feeddict)
self.local_steps += 1
if terminal:
if self.thread_index == 0:
self.train_scores.append(self.doom_wrapper.get_total_reward())
self.doom_wrapper.reset()
if self.local_network.has_state():
self.local_network.reset_state()
break
if terminal:
R = 0.0
else:
R = self.local_network.get_value(self._session, self.doom_wrapper.get_current_state())
for ri, fs in zip(rewards_reversed, reversed(frameskips)):
scale, gamma = self.scale_gamma(fs)
R = scale * ri + gamma * R
Rs.insert(0, R)
train_op_feed_dict = {
self.local_network.vars.state_img: states_img,
self.local_network.vars.a: actions,
self.local_network.vars.frameskip: frameskips,
self.local_network.vars.R: Rs
}
if self.use_misc:
train_op_feed_dict[self.local_network.vars.state_misc] = states_misc
if self.local_network.has_state():
train_op_feed_dict[self.local_network.vars.initial_network_state] = initial_network_state
train_op_feed_dict[self.local_network.vars.sequence_length] = [len(actions)]
self._session.run(self.train_op, feed_dict=train_op_feed_dict)
return steps_performed
@staticmethod
def choose_best_frameskip_binomial(n, p, deterministic=True):
# Binomial test:
if deterministic:
frameskip = int(round(n * p)) + 1
else:
n = int(n) + int((n - int(n)) > random.random())
frameskip = round(np.random.binomial(n, p)) + 1
return frameskip
def _get_best_action(self, sess, state, deterministic=True):
policy, frameskip_policy = self.local_network.get_policy(sess, state)
action_index = self.choose_best_index(policy, deterministic=deterministic)
if self.binomial_frameskip:
n, p = frameskip_policy
if self.multi_frameskip:
n = n[action_index]
p = p[action_index]
frameskip = self.choose_best_frameskip_binomial(n, p, deterministic=deterministic)
else:
frameskip_index = self.choose_best_index(frameskip_policy, deterministic=deterministic)
frameskip = self.frameskips[frameskip_index]
return action_index, frameskip