diff --git a/src/python/ksc/adbench_lstm/lstm.py b/src/python/ksc/adbench_lstm/lstm.py new file mode 100644 index 000000000..73cc8b8d3 --- /dev/null +++ b/src/python/ksc/adbench_lstm/lstm.py @@ -0,0 +1,52 @@ +# A reference implementation of D-LSTM, so that we can test our +# Knossos implementation. +# +# See also +# +# https://github.com/awf/ADBench/blob/e5f72ab5dcb453b1bb72dd000e5add6b90502ec4/src/python/modules/Tensorflow/TensorflowLSTM.py + +import numpy as np + +def sigmoid(x): + return 1.0 / (1.0 + np.exp(-x)) + +def lstm_model(weight, bias, hidden, cell, inp): + gates = np.concatenate((inp, hidden, inp, hidden), 0) * weight + bias + hidden_size = hidden.shape[0] + + forget = sigmoid(gates[0:hidden_size]) + ingate = sigmoid(gates[hidden_size:2*hidden_size]) + outgate = sigmoid(gates[2*hidden_size:3*hidden_size]) + change = np.tanh(gates[3*hidden_size:]) + + cell = cell * forget + ingate * change + hidden = outgate * np.tanh(cell) + + return (hidden, cell) + +def lstm_predict(w, w2, s, x): + s2 = s.copy() + # NOTE not sure if this should be element-wise or matrix multiplication + x = x * w2[0] + for i in range(0, len(s), 2): + (s2[i], s2[i + 1]) = lstm_model(w[i], w[i + 1], s[i], s[i + 1], x) + x = s2[i] + return (x * w2[1] + w2[2], s2) + +def lstm_objective(main_params, extra_params, state, sequence, _range=None): + if _range is None: + _range = range(0, len(sequence) - 1) + + total = 0.0 + count = 0 + _input = sequence[_range[0]] + all_states = [state] + for t in _range: + ypred, new_state = lstm_predict(main_params, extra_params, all_states[t], _input) + all_states.append(new_state) + ynorm = ypred - np.log(sum(np.exp(ypred), 2)) + ygold = sequence[t + 1] + total += sum(ygold * ynorm) + count += ygold.shape[0] + _input = ygold + return -total / count diff --git a/src/python/ksc/adbench_lstm/test.py b/src/python/ksc/adbench_lstm/test.py new file mode 100644 index 000000000..c3b1eccdb --- /dev/null +++ b/src/python/ksc/adbench_lstm/test.py @@ -0,0 +1,172 @@ +# Remarkably, adbench-lstm.ks agrees exactly with our reference +# implementation, so we set the almost equal check to check to a very +# large number of decimal places. + +import adbench_lstm as a +import random +import numpy as np + +from ksc.adbench_lstm.lstm import ( + lstm_model, lstm_predict, lstm_objective, sigmoid) + +ten = np.ndarray +d = a.vec_double + +def r(): + return random.random() * 2 - 1 + +def rv(n): + return [r() for _ in range(n)] + +def rvv(n, m): + return [rv(m) for _ in range(n)] + +def concat(l): + return sum(l, []) + +# The ks::vec __iter__ method that is automatically generated by +# pybind11 is one that keeps going off the end of the vec and never +# stops. Until I get time to dig into how to make it generate a +# better one, here's a handy utility function. +def to_list(x): + return [x[i] for i in range(len(x))] + +def main(): + assert_equal_model() + assert_equal_predict_and_objective() + print("The assertions didn't throw any errors, so " + "everything must be good!") + +def assert_equal_model(): + h = 2 + + w1 = rv(h) + w2 = rv(h) + w3 = rv(h) + w4 = rv(h) + + b1 = rv(h) + b2 = rv(h) + b3 = rv(h) + b4 = rv(h) + + hidden = rv(h) + cell = rv(h) + input_ = rv(h) + + weight = concat([w1, w2, w3, w4]) + bias = concat([b1, b2, b3, b4]) + + (ao0, ao1) = a.lstm_model(d(w1), + d(b1), + d(w2), + d(b2), + d(w3), + d(b3), + d(w4), + d(b4), + d(hidden), + d(cell), + d(input_)) + + ao0l = to_list(ao0) + ao1l = to_list(ao1) + + nd_weight = np.array(weight) + + (mo0, mo1) = lstm_model(nd_weight, + np.array(bias), + np.array(hidden), + np.array(cell), + np.array(input_)) + + print(mo0) + print(ao0l) + print(mo1) + print(ao1l) + + np.testing.assert_almost_equal(ao0l, mo0, decimal=12, err_msg="Model 1") + np.testing.assert_almost_equal(ao1l, mo1, decimal=12, err_msg="Model 2") + +def assert_equal_predict_and_objective(): + l = 2 + h = 10 + + w1 = rvv(l, h) + w2 = rvv(l, h) + w3 = rvv(l, h) + w4 = rvv(l, h) + + b1 = rvv(l, h) + b2 = rvv(l, h) + b3 = rvv(l, h) + b4 = rvv(l, h) + + hidden = rvv(l, h) + cell = rvv(l, h) + + input_ = rv(h) + + input_weight = rv(h) + output_weight = rv(h) + output_bias = rv(h) + + tww = np.array(concat([concat([w1i, w2i, w3i, w4i]), + concat([b1i, b2i, b3i, b4i])] + for (w1i, w2i, w3i, w4i, b1i, b2i, b3i, b4i) + in zip(w1, w2, w3, w4, b1, b2, b3, b4))) + + ts = np.array(concat(([hiddeni, celli] + for (hiddeni, celli) + in zip(hidden, cell)))) + + tww2 = np.array([input_weight, output_weight, output_bias]) + + tinput_ = np.array(input_) + + print(tww.shape) + print(tww2.shape) + print(ts.shape) + print(tinput_.shape) + + (tp0, tp1) = lstm_predict(tww, tww2, ts, tinput_) + + + tp0l = tp0.tolist() + tp1l = tp1.tolist() + + wf_etc = [tuple(d(i) for i in tu) + for tu in zip(w1, b1, w2, b2, w3, b3, w4, b4, hidden, cell)] + + (v, vtvv) = a.lstm_predict(a.vec_tuple_vec10(wf_etc), + d(input_weight), + d(output_weight), + d(output_bias), + d(input_)) + + vl = to_list(v) + vtvvl = concat([to_list(v1), to_list(v2)] for (v1, v2) in to_list(vtvv)) + + to = lstm_objective(tww, tww2, ts, [tinput_, tinput_]) + tol = to.tolist() + + print(tol) + + aol = a.lstm_objective(a.vec_tuple_vec10(wf_etc), + d(input_weight), + d(output_weight), + d(output_bias), + a.vec_tuple_vec2([(d(input_), d(input_))])) + + print(tp0l) + print(vl) + print(tp1l) + print(vtvvl) + print(tol) + print(aol) + + np.testing.assert_almost_equal(tp0l, vl, decimal=12, err_msg="Predict 1") + np.testing.assert_almost_equal(tp1l, vtvvl, decimal=12, err_msg="Predict 2") + np.testing.assert_almost_equal(tol, aol, decimal=12, err_msg="Objective") + +if __name__ == '__main__': main() diff --git a/test/builds/build_and_test.yml b/test/builds/build_and_test.yml index 612023a13..156cc5c7a 100644 --- a/test/builds/build_and_test.yml +++ b/test/builds/build_and_test.yml @@ -43,6 +43,9 @@ jobs: - script: sh ./test/builds/build_and_test_mnistcnn.sh . pybind11 displayName: Testing MNIST CNN + - script: sh ./test/builds/build_and_test_adbench_lstm.sh . pybind11 + displayName: Testing ADBench LSTM + - script: ./profile test/ksc/gmm-obj prof-obj.out prof-obj-functions.txt prof-obj-lines.txt && ./profile test/ksc/gmm-rev prof-rev.out prof-rev-functions.txt prof-rev-lines.txt displayName: gperftools diff --git a/test/builds/build_and_test_adbench_lstm.sh b/test/builds/build_and_test_adbench_lstm.sh new file mode 100644 index 000000000..67b5c3d07 --- /dev/null +++ b/test/builds/build_and_test_adbench_lstm.sh @@ -0,0 +1,40 @@ +# There's a lot of duplication between this and +# build_and_test_mnistcnn.sh, but we will follow the Rule of Three +# +# https://en.wikipedia.org/wiki/Rule_of_three_(computer_programming) + +set -e + +KNOSSOS=$1 +PYBIND11=$2 + +RUNTIME=$KNOSSOS/src/runtime +OBJ=$KNOSSOS/obj/test/ksc +PYBIND11_INCLUDE=$PYBIND11/include + +PYTHON3_CONFIG_EXTENSION_SUFFIX=$(python3-config --extension-suffix) + +MODULE_NAME=adbench_lstm +MODULE_FILE="$OBJ/$MODULE_NAME$PYTHON3_CONFIG_EXTENSION_SUFFIX" + +echo Compiling... + +g++-7 -fmax-errors=5 \ + -fdiagnostics-color=always \ + -Wall \ + -Wno-unused \ + -Wno-maybe-uninitialized \ + -I$RUNTIME \ + -I$OBJ \ + -I$PYBIND11_INCLUDE \ + $(PYTHONPATH=$PYBIND11 python3 -m pybind11 --includes) \ + -O3 \ + -std=c++17 \ + -shared \ + -fPIC \ + -o $MODULE_FILE \ + -DMNISTCNNCPP_MODULE_NAME=$MODULE_NAME \ + $KNOSSOS/test/ksc/adbench-lstmpy.cpp + +KSCPY=$KNOSSOS/src/python +PYTHONPATH=$OBJ:$KSCPY python3 -m ksc.adbench_lstm.test diff --git a/test/ksc/adbench-lstmpy.cpp b/test/ksc/adbench-lstmpy.cpp new file mode 100644 index 000000000..3ab105710 --- /dev/null +++ b/test/ksc/adbench-lstmpy.cpp @@ -0,0 +1,52 @@ +/* There's a lot of duplication between this and mnistcnnpy.cpp, but + * we will follow the Rule of Three + * + * https://en.wikipedia.org/wiki/Rule_of_three_(computer_programming) + */ + +#include +#include +#include + +namespace py = pybind11; + +#include "adbench-lstm.cpp" + +int ks::main() { return 0; }; + +template +void declare_vec(py::module &m, std::string typestr) { + using Class = ks::vec; + std::string pyclass_name = std::string("vec_") + typestr; + py::class_(m, pyclass_name.c_str()) + .def(py::init<>()) + .def(py::init const&>()) + .def("is_zero", &Class::is_zero) + .def("__getitem__", [](const ks::vec &a, const int &b) { + return a[b]; + }) + .def("__len__", [](const ks::vec &a) { return a.size(); }); +} + +// In the future it might make more sense to move the vec type +// definitions to a general Knossos CPP types Python module. +// +// I don't know how to make a single Python type that works for vecs +// of many different sorts of contents. It seems like it must be +// possible because Python tuples map to std::tuples regardless of +// their contents. I'll look into it later. For now I'll just have a +// bunch of verbose replication. +PYBIND11_MODULE(MNISTCNNCPP_MODULE_NAME, m) { + declare_vec(m, std::string("double")); + declare_vec, ks::vec, ks::vec, ks::vec, ks::vec, ks::vec, ks::vec, ks::vec, ks::vec, ks::vec>>(m, std::string("tuple_vec10")); + declare_vec, ks::vec>>(m, std::string("tuple_vec2")); + declare_vec >(m, std::string("vec_double")); + declare_vec > >(m, std::string("vec_vec_double")); + declare_vec > > >(m, std::string("vec_vec_vec_double")); + declare_vec > > > >(m, std::string("vec_vec_vec_vec_double")); + m.def("sigmoid", &ks::sigmoid); + m.def("logsumexp", &ks::logsumexp); + m.def("lstm_model", &ks::lstm_model); + m.def("lstm_predict", &ks::lstm_predict); + m.def("lstm_objective", &ks::lstm_objective); +}