-
Notifications
You must be signed in to change notification settings - Fork 56
/
GGNN_core.py
executable file
·334 lines (279 loc) · 16.2 KB
/
GGNN_core.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
#!/usr/bin/env/python
from typing import Tuple, List, Any, Sequence
import tensorflow as tf
import time
import os
import json
import numpy as np
import pickle
import random
import utils
from utils import MLP, dataset_info, ThreadedIterator, graph_to_adj_mat, SMALL_NUMBER, LARGE_NUMBER, graph_to_adj_mat
class ChemModel(object):
@classmethod
def default_params(cls):
return {
}
def __init__(self, args):
self.args = args
# Collect argument things:
data_dir = ''
if '--data_dir' in args and args['--data_dir'] is not None:
data_dir = args['--data_dir']
self.data_dir = data_dir
# Collect parameters:
params = self.default_params()
config_file = args.get('--config-file')
if config_file is not None:
with open(config_file, 'r') as f:
params.update(json.load(f))
config = args.get('--config')
if config is not None:
params.update(json.loads(config))
self.params = params
# Get which dataset in use
self.params['dataset']=dataset=args.get('--dataset')
# Number of atom types of this dataset
self.params['num_symbols']=len(dataset_info(dataset)["atom_types"])
self.run_id = "_".join([time.strftime("%Y-%m-%d-%H-%M-%S"), str(os.getpid())])
log_dir = args.get('--log_dir') or '.'
self.log_file = os.path.join(log_dir, "%s_log_%s.json" % (self.run_id, dataset))
self.best_model_file = os.path.join(log_dir, "%s_model.pickle" % self.run_id)
with open(os.path.join(log_dir, "%s_params_%s.json" % (self.run_id,dataset)), "w") as f:
json.dump(params, f)
print("Run %s starting with following parameters:\n%s" % (self.run_id, json.dumps(self.params)))
random.seed(params['random_seed'])
np.random.seed(params['random_seed'])
# Load data:
self.max_num_vertices = 0
self.num_edge_types = 0
self.annotation_size = 0
self.train_data = self.load_data(params['train_file'], is_training_data=True)
self.valid_data = self.load_data(params['valid_file'], is_training_data=False)
# Build the actual model
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
self.graph = tf.Graph()
self.sess = tf.Session(graph=self.graph, config=config)
with self.graph.as_default():
tf.set_random_seed(params['random_seed'])
self.placeholders = {}
self.weights = {}
self.ops = {}
self.make_model()
self.make_train_step()
# Restore/initialize variables:
restore_file = args.get('--restore')
if restore_file is not None:
self.restore_model(restore_file)
else:
self.initialize_model()
def load_data(self, file_name, is_training_data: bool):
full_path = os.path.join(self.data_dir, file_name)
print("Loading data from %s" % full_path)
with open(full_path, 'r') as f:
data = json.load(f)
restrict = self.args.get("--restrict_data")
if restrict is not None and restrict > 0:
data = data[:restrict]
# Get some common data out:
num_fwd_edge_types = len(utils.bond_dict) - 1
for g in data:
self.max_num_vertices = max(self.max_num_vertices, max([v for e in g['graph'] for v in [e[0], e[2]]]))
self.num_edge_types = max(self.num_edge_types, num_fwd_edge_types * (1 if self.params['tie_fwd_bkwd'] else 2))
self.annotation_size = max(self.annotation_size, len(data[0]["node_features"][0]))
return self.process_raw_graphs(data, is_training_data, file_name)
@staticmethod
def graph_string_to_array(graph_string: str) -> List[List[int]]:
return [[int(v) for v in s.split(' ')]
for s in graph_string.split('\n')]
def process_raw_graphs(self, raw_data, is_training_data, file_name, bucket_sizes=None):
raise Exception("Models have to implement process_raw_graphs!")
def make_model(self):
self.placeholders['target_values'] = tf.placeholder(tf.float32, [len(self.params['task_ids']), None],
name='target_values')
self.placeholders['target_mask'] = tf.placeholder(tf.float32, [len(self.params['task_ids']), None],
name='target_mask')
self.placeholders['num_graphs'] = tf.placeholder(tf.int64, [], name='num_graphs')
self.placeholders['out_layer_dropout_keep_prob'] = tf.placeholder(tf.float32, [], name='out_layer_dropout_keep_prob')
# whether this session is for generating new graphs or not
self.placeholders['is_generative'] = tf.placeholder(tf.bool, [], name='is_generative')
with tf.variable_scope("graph_model"):
self.prepare_specific_graph_model()
# Initial state: embedding
initial_state= self.get_node_embedding_state(self.placeholders['initial_node_representation'])
# This does the actual graph work:
if self.params['use_graph']:
if self.params["residual_connection_on"]:
self.ops['final_node_representations'] = self.compute_final_node_representations_with_residual(
initial_state,
tf.transpose(self.placeholders['adjacency_matrix'], [1, 0, 2, 3]),
"_encoder")
else:
self.ops['final_node_representations'] = self.compute_final_node_representations_without_residual(
initial_state,
tf.transpose(self.placeholders['adjacency_matrix'], [1, 0, 2, 3]), self.weights['edge_weights_encoder'],
self.weights['edge_biases_encoder'], self.weights['node_gru_encoder'], "gru_scope_encoder")
else:
self.ops['final_node_representations'] = initial_state
# Calculate p(z|x)'s mean and log variance
self.ops['mean'], self.ops['logvariance'] = self.compute_mean_and_logvariance()
# Sample from a gaussian distribution according to the mean and log variance
self.ops['z_sampled'] = self.sample_with_mean_and_logvariance()
# Construct logit matrices for both edges and edge types
self.construct_logit_matrices()
# Obtain losses for edges and edge types
self.ops['qed_loss'] = []
self.ops['loss']=self.construct_loss()
def make_train_step(self):
trainable_vars = self.sess.graph.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES)
if self.args.get('--freeze-graph-model'):
graph_vars = set(self.sess.graph.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope="graph_model"))
filtered_vars = []
for var in trainable_vars:
if var not in graph_vars:
filtered_vars.append(var)
else:
print("Freezing weights of variable %s." % var.name)
trainable_vars = filtered_vars
optimizer = tf.train.AdamOptimizer(self.params['learning_rate'])
grads_and_vars = optimizer.compute_gradients(self.ops['loss'], var_list=trainable_vars)
clipped_grads = []
for grad, var in grads_and_vars:
if grad is not None:
clipped_grads.append((tf.clip_by_norm(grad, self.params['clamp_gradient_norm']), var))
else:
clipped_grads.append((grad, var))
grads_for_display=[]
for grad, var in grads_and_vars:
if grad is not None:
grads_for_display.append((tf.clip_by_norm(grad, self.params['clamp_gradient_norm']), var))
self.ops['grads']= grads_for_display
self.ops['train_step'] = optimizer.apply_gradients(clipped_grads)
# Initialize newly-introduced variables:
self.sess.run(tf.local_variables_initializer())
def gated_regression(self, last_h, regression_gate, regression_transform):
raise Exception("Models have to implement gated_regression!")
def prepare_specific_graph_model(self) -> None:
raise Exception("Models have to implement prepare_specific_graph_model!")
def compute_mean_and_logvariance(self):
raise Exception("Models have to implement compute_mean_and_logvariance!")
def sample_with_mean_and_logvariance(self):
raise Exception("Models have to implement sample_with_mean_and_logvariance!")
def construct_logit_matrices(self):
raise Exception("Models have to implement construct_logit_matrices!")
def construct_loss(self):
raise Exception("Models have to implement construct_loss!")
def make_minibatch_iterator(self, data: Any, is_training: bool):
raise Exception("Models have to implement make_minibatch_iterator!")
"""
def save_intermediate_results(self, adjacency_matrix, edge_type_prob, edge_type_label, node_symbol_prob, node_symbol, edge_prob, edge_prob_label, qed_prediction, qed_labels, mean, logvariance):
with open('intermediate_results_%s' % self.params["dataset"], 'wb') as out_file:
pickle.dump([adjacency_matrix, edge_type_prob, edge_type_label, node_symbol_prob, node_symbol, edge_prob, edge_prob_label, qed_prediction, qed_labels, mean, logvariance], out_file, pickle.HIGHEST_PROTOCOL)
"""
def save_probs(self, all_results):
with open('epoch_prob_matices_%s' % self.params["dataset"], 'wb') as out_file:
pickle.dump([all_results], out_file, pickle.HIGHEST_PROTOCOL)
def run_epoch(self, epoch_name: str, epoch_num, data, is_training: bool):
loss = 0
start_time = time.time()
processed_graphs = 0
batch_iterator = ThreadedIterator(self.make_minibatch_iterator(data, is_training), max_queue_size=5)
for step, batch_data in enumerate(batch_iterator):
num_graphs = batch_data[self.placeholders['num_graphs']]
processed_graphs += num_graphs
batch_data[self.placeholders['is_generative']] = False
# Randomly sample from normal distribution
batch_data[self.placeholders['z_prior']] = utils.generate_std_normal(\
self.params['batch_size'], batch_data[self.placeholders['num_vertices']],self.params['hidden_size'])
if is_training:
batch_data[self.placeholders['out_layer_dropout_keep_prob']] = self.params['out_layer_dropout_keep_prob']
fetch_list = [self.ops['loss'], self.ops['train_step'],
self.ops["edge_loss"], self.ops['kl_loss'],
self.ops['node_symbol_prob'], self.placeholders['node_symbols'],
self.ops['qed_computed_values'], self.placeholders['target_values'], self.ops['total_qed_loss'],
self.ops['mean'], self.ops['logvariance'],
self.ops['grads'], self.ops['mean_edge_loss'], self.ops['mean_node_symbol_loss'],
self.ops['mean_kl_loss'], self.ops['mean_total_qed_loss']]
else:
batch_data[self.placeholders['out_layer_dropout_keep_prob']] = 1.0
fetch_list = [self.ops['mean_edge_loss'], self.ops['accuracy_task0']]
result = self.sess.run(fetch_list, feed_dict=batch_data)
"""try:
if is_training:
self.save_intermediate_results(batch_data[self.placeholders['adjacency_matrix']],
result[11], result[12], result[4], result[5], result[9], result[10], result[6], result[7], result[13], result[14])
except IndexError:
pass"""
batch_loss = result[0]
loss += batch_loss * num_graphs
print("Running %s, batch %i (has %i graphs). Loss so far: %.4f" % (epoch_name,
step,
num_graphs,
loss / processed_graphs), end='\r')
loss = loss / processed_graphs
instance_per_sec = processed_graphs / (time.time() - start_time)
return loss, instance_per_sec
def generate_new_graphs(self, data):
raise Exception("Models have to implement generate_new_graphs!")
def train(self):
log_to_save = []
total_time_start = time.time()
with self.graph.as_default():
for epoch in range(1, self.params['num_epochs'] + 1):
if not self.params['generation']:
print("== Epoch %i" % epoch)
train_loss, train_speed = self.run_epoch("epoch %i (training)" % epoch, epoch,
self.train_data, True)
print("\r\x1b[K Train: loss: %.5f| instances/sec: %.2f" % (train_loss, train_speed))
valid_loss,valid_speed = self.run_epoch("epoch %i (validation)" % epoch, epoch,
self.valid_data, False)
print("\r\x1b[K Valid: loss: %.5f | instances/sec: %.2f" % (valid_loss,valid_speed))
epoch_time = time.time() - total_time_start
log_entry = {
'epoch': epoch,
'time': epoch_time,
'train_results': (train_loss, train_speed),
}
log_to_save.append(log_entry)
with open(self.log_file, 'w') as f:
json.dump(log_to_save, f, indent=4)
self.save_model(str(epoch)+("_%s.pickle" % (self.params["dataset"])))
# Run epoches for graph generation
if epoch >= self.params['epoch_to_generate']:
self.generate_new_graphs(self.train_data)
def save_model(self, path: str) -> None:
weights_to_save = {}
for variable in self.sess.graph.get_collection(tf.GraphKeys.GLOBAL_VARIABLES):
assert variable.name not in weights_to_save
weights_to_save[variable.name] = self.sess.run(variable)
data_to_save = {
"params": self.params,
"weights": weights_to_save
}
with open(path, 'wb') as out_file:
pickle.dump(data_to_save, out_file, pickle.HIGHEST_PROTOCOL)
def initialize_model(self) -> None:
init_op = tf.group(tf.global_variables_initializer(),
tf.local_variables_initializer())
self.sess.run(init_op)
def restore_model(self, path: str) -> None:
print("Restoring weights from file %s." % path)
with open(path, 'rb') as in_file:
data_to_load = pickle.load(in_file)
variables_to_initialize = []
with tf.name_scope("restore"):
restore_ops = []
used_vars = set()
for variable in self.sess.graph.get_collection(tf.GraphKeys.GLOBAL_VARIABLES):
used_vars.add(variable.name)
if variable.name in data_to_load['weights']:
restore_ops.append(variable.assign(data_to_load['weights'][variable.name]))
else:
print('Freshly initializing %s since no saved value was found.' % variable.name)
variables_to_initialize.append(variable)
for var_name in data_to_load['weights']:
if var_name not in used_vars:
print('Saved weights for %s not used by model.' % var_name)
restore_ops.append(tf.variables_initializer(variables_to_initialize))
self.sess.run(restore_ops)