-
Notifications
You must be signed in to change notification settings - Fork 56
/
CGVAE.py
executable file
·1025 lines (953 loc) · 62.8 KB
/
CGVAE.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/usr/bin/env/python
"""
Usage:
CGVAE.py [options]
Options:
-h --help Show this screen
--dataset NAME Dataset name: zinc, qm9, cep
--config-file FILE Hyperparameter configuration file path (in JSON format)
--config CONFIG Hyperparameter configuration dictionary (in JSON format)
--log_dir NAME log dir name
--data_dir NAME data dir name
--restore FILE File to restore weights from.
--freeze-graph-model Freeze weights of graph model components
"""
from typing import Sequence, Any
from docopt import docopt
from collections import defaultdict, deque
import numpy as np
import tensorflow as tf
import sys, traceback
import pdb
import json
import os
from GGNN_core import ChemModel
import utils
from utils import *
import pickle
import random
from numpy import linalg as LA
from rdkit import Chem
from copy import deepcopy
from rdkit.Chem import QED
import os
import time
from data_augmentation import *
'''
Comments provide the expected tensor shapes where helpful.
Key to symbols in comments:
---------------------------
[...]: a tensor
; ; : a list
b: batch size
e: number of edege types (3)
es: maximum number of BFS transitions in this batch
v: number of vertices per graph in this batch
h: GNN hidden size
'''
class DenseGGNNChemModel(ChemModel):
def __init__(self, args):
super().__init__(args)
@classmethod
def default_params(cls):
params = dict(super().default_params())
params.update({
'task_sample_ratios': {},
'use_edge_bias': True, # whether use edge bias in gnn
'clamp_gradient_norm': 1.0,
'out_layer_dropout_keep_prob': 1.0,
'tie_fwd_bkwd': True,
'task_ids': [0], # id of property prediction
'random_seed': 0, # fixed for reproducibility
'batch_size': 8 if dataset=='zinc' or dataset=='cep' else 64,
"qed_trade_off_lambda": 10,
'prior_learning_rate': 0.05,
'stop_criterion': 0.01,
'num_epochs': 3 if dataset=='zinc' or dataset=='cep' else 10,
'epoch_to_generate': 3 if dataset=='zinc' or dataset=='cep' else 10,
'number_of_generation': 30000,
'optimization_step': 0,
'maximum_distance': 50,
"use_argmax_generation": False, # use random sampling or argmax during generation
'residual_connection_on': True, # whether residual connection is on
'residual_connections': { # For iteration i, specify list of layers whose output is added as an input
2: [0],
4: [0, 2],
6: [0, 2, 4],
8: [0, 2, 4, 6],
10: [0, 2, 4, 6, 8],
12: [0, 2, 4, 6, 8, 10],
14: [0, 2, 4, 6, 8, 10, 12],
},
'num_timesteps': 12, # gnn propagation step
'hidden_size': 100,
"kl_trade_off_lambda": 0.3, # kl tradeoff
'learning_rate': 0.001,
'graph_state_dropout_keep_prob': 1,
"compensate_num": 1, # how many atoms to be added during generation
'train_file': 'data/molecules_train_%s.json' % dataset,
'valid_file': 'data/molecules_valid_%s.json' % dataset,
'try_different_starting': True,
"num_different_starting": 6,
'generation': False, # only for generation
'use_graph': True, # use gnn
"label_one_hot": False, # one hot label or not
"multi_bfs_path": False, # whether sample several BFS paths for each molecule
"bfs_path_count": 30,
"path_random_order": False, # False: canonical order, True: random order
"sample_transition": False, # whether use transition sampling
'edge_weight_dropout_keep_prob': 1,
'check_overlap_edge': False,
"truncate_distance": 10,
})
return params
def prepare_specific_graph_model(self) -> None:
h_dim = self.params['hidden_size']
expanded_h_dim=self.params['hidden_size']+self.params['hidden_size'] + 1 # 1 for focus bit
self.placeholders['graph_state_keep_prob'] = tf.placeholder(tf.float32, None, name='graph_state_keep_prob')
self.placeholders['edge_weight_dropout_keep_prob'] = tf.placeholder(tf.float32, None, name='edge_weight_dropout_keep_prob')
self.placeholders['initial_node_representation'] = tf.placeholder(tf.float32,
[None, None, self.params['hidden_size']],
name='node_features') # padded node symbols
# mask out invalid node
self.placeholders['node_mask'] = tf.placeholder(tf.float32, [None, None], name='node_mask') # [b x v]
self.placeholders['num_vertices'] = tf.placeholder(tf.int32, ())
# adj for encoder
self.placeholders['adjacency_matrix'] = tf.placeholder(tf.float32,
[None, self.num_edge_types, None, None], name="adjacency_matrix") # [b, e, v, v]
# labels for node symbol prediction
self.placeholders['node_symbols'] = tf.placeholder(tf.float32, [None, None, self.params['num_symbols']]) # [b, v, edge_type]
# node symbols used to enhance latent representations
self.placeholders['latent_node_symbols'] = tf.placeholder(tf.float32,
[None, None, self.params['hidden_size']], name='latent_node_symbol') # [b, v, h]
# mask out cross entropies in decoder
self.placeholders['iteration_mask']=tf.placeholder(tf.float32, [None, None]) # [b, es]
# adj matrices used in decoder
self.placeholders['incre_adj_mat']=tf.placeholder(tf.float32, [None, None, self.num_edge_types, None, None], name='incre_adj_mat') # [b, es, e, v, v]
# distance
self.placeholders['distance_to_others']=tf.placeholder(tf.int32, [None, None, None], name='distance_to_others') # [b, es,v]
# maximum iteration number of this batch
self.placeholders['max_iteration_num']=tf.placeholder(tf.int32, [], name='max_iteration_num') # number
# node number in focus at each iteration step
self.placeholders['node_sequence']=tf.placeholder(tf.float32, [None, None, None], name='node_sequence') # [b, es, v]
# mask out invalid edge types at each iteration step
self.placeholders['edge_type_masks']=tf.placeholder(tf.float32, [None, None, self.num_edge_types, None], name='edge_type_masks') # [b, es, e, v]
# ground truth edge type labels at each iteration step
self.placeholders['edge_type_labels']=tf.placeholder(tf.float32, [None, None, self.num_edge_types, None], name='edge_type_labels') # [b, es, e, v]
# mask out invalid edge at each iteration step
self.placeholders['edge_masks']=tf.placeholder(tf.float32, [None, None, None], name='edge_masks') # [b, es, v]
# ground truth edge labels at each iteration step
self.placeholders['edge_labels']=tf.placeholder(tf.float32, [None, None, None], name='edge_labels') # [b, es, v]
# ground truth labels for whether it stops at each iteration step
self.placeholders['local_stop']=tf.placeholder(tf.float32, [None, None], name='local_stop') # [b, es]
# z_prior sampled from standard normal distribution
self.placeholders['z_prior']=tf.placeholder(tf.float32, [None, None, self.params['hidden_size']], name='z_prior') # the prior of z sampled from normal distribution
# put in front of kl latent loss
self.placeholders['kl_trade_off_lambda']=tf.placeholder(tf.float32, [], name='kl_trade_off_lambda') # number
# overlapped edge features
self.placeholders['overlapped_edge_features']=tf.placeholder(tf.int32, [None, None, None], name='overlapped_edge_features') # [b, es, v]
# weights for encoder and decoder GNN.
if self.params["residual_connection_on"]:
# weights for encoder and decoder GNN. Different weights for each iteration
for scope in ['_encoder', '_decoder']:
if scope == '_encoder':
new_h_dim=h_dim
else:
new_h_dim=expanded_h_dim
for iter_idx in range(self.params['num_timesteps']):
with tf.variable_scope("gru_scope"+scope+str(iter_idx), reuse=False):
self.weights['edge_weights'+scope+str(iter_idx)] = tf.Variable(glorot_init([self.num_edge_types, new_h_dim, new_h_dim]))
if self.params['use_edge_bias']:
self.weights['edge_biases'+scope+str(iter_idx)] = tf.Variable(np.zeros([self.num_edge_types, 1, new_h_dim]).astype(np.float32))
cell = tf.contrib.rnn.GRUCell(new_h_dim)
cell = tf.nn.rnn_cell.DropoutWrapper(cell,
state_keep_prob=self.placeholders['graph_state_keep_prob'])
self.weights['node_gru'+scope+str(iter_idx)] = cell
else:
for scope in ['_encoder', '_decoder']:
if scope == '_encoder':
new_h_dim=h_dim
else:
new_h_dim=expanded_h_dim
self.weights['edge_weights'+scope] = tf.Variable(glorot_init([self.num_edge_types, new_h_dim, new_h_dim]))
if self.params['use_edge_bias']:
self.weights['edge_biases'+scope] = tf.Variable(np.zeros([self.num_edge_types, 1, new_h_dim]).astype(np.float32))
with tf.variable_scope("gru_scope"+scope):
cell = tf.contrib.rnn.GRUCell(new_h_dim)
cell = tf.nn.rnn_cell.DropoutWrapper(cell,
state_keep_prob=self.placeholders['graph_state_keep_prob'])
self.weights['node_gru'+scope] = cell
# weights for calculating mean and variance
self.weights['mean_weights'] = tf.Variable(glorot_init([h_dim, h_dim]))
self.weights['mean_biases'] = tf.Variable(np.zeros([1, h_dim]).astype(np.float32))
self.weights['variance_weights'] = tf.Variable(glorot_init([h_dim, h_dim]))
self.weights['variance_biases'] = tf.Variable(np.zeros([1, h_dim]).astype(np.float32))
# The weights for generating nodel symbol logits
self.weights['node_symbol_weights'] = tf.Variable(glorot_init([h_dim, self.params['num_symbols']]))
self.weights['node_symbol_biases'] = tf.Variable(np.zeros([1, self.params['num_symbols']]).astype(np.float32))
feature_dimension=6*expanded_h_dim
# record the total number of features
self.params["feature_dimension"] = 6
# weights for generating edge type logits
for i in range(self.num_edge_types):
self.weights['edge_type_%d' % i] = tf.Variable(glorot_init([feature_dimension, feature_dimension]))
self.weights['edge_type_biases_%d' % i] = tf.Variable(np.zeros([1, feature_dimension]).astype(np.float32))
self.weights['edge_type_output_%d' % i] = tf.Variable(glorot_init([feature_dimension, 1]))
# weights for generating edge logits
self.weights['edge_iteration'] = tf.Variable(glorot_init([feature_dimension, feature_dimension]))
self.weights['edge_iteration_biases'] = tf.Variable(np.zeros([1, feature_dimension]).astype(np.float32))
self.weights['edge_iteration_output'] = tf.Variable(glorot_init([feature_dimension, 1]))
# Weights for the stop node
self.weights["stop_node"] = tf.Variable(glorot_init([1, expanded_h_dim]))
# Weight for distance embedding
self.weights['distance_embedding'] = tf.Variable(glorot_init([self.params['maximum_distance'], expanded_h_dim]))
# Weight for overlapped edge feature
self.weights["overlapped_edge_weight"] = tf.Variable(glorot_init([2, expanded_h_dim]))
# weights for linear projection on qed prediction input
self.weights['qed_weights'] = tf.Variable(glorot_init([h_dim, h_dim]))
self.weights['qed_biases'] = tf.Variable(np.zeros([1, h_dim]).astype(np.float32))
# use node embeddings
self.weights["node_embedding"]= tf.Variable(glorot_init([self.params["num_symbols"], h_dim]))
# graph state mask
self.ops['graph_state_mask']= tf.expand_dims(self.placeholders['node_mask'], 2)
# transform one hot vector to dense embedding vectors
def get_node_embedding_state(self, one_hot_state):
node_nums=tf.argmax(one_hot_state, axis=2)
return tf.nn.embedding_lookup(self.weights["node_embedding"], node_nums) * self.ops['graph_state_mask']
def compute_final_node_representations_with_residual(self, h, adj, scope_name): # scope_name: _encoder or _decoder
# h: initial representation, adj: adjacency matrix, different GNN parameters for encoder and decoder
v = self.placeholders['num_vertices']
# _decoder uses a larger latent space because concat of symbol and latent representation
if scope_name=="_decoder":
h_dim = self.params['hidden_size'] + self.params['hidden_size'] + 1
else:
h_dim = self.params['hidden_size']
h = tf.reshape(h, [-1, h_dim]) # [b*v, h]
# record all hidden states at each iteration
all_hidden_states=[h]
for iter_idx in range(self.params['num_timesteps']):
with tf.variable_scope("gru_scope"+scope_name+str(iter_idx), reuse=None) as g_scope:
for edge_type in range(self.num_edge_types):
# the message passed from this vertice to other vertices
m = tf.matmul(h, self.weights['edge_weights'+scope_name+str(iter_idx)][edge_type]) # [b*v, h]
if self.params['use_edge_bias']:
m += self.weights['edge_biases'+scope_name+str(iter_idx)][edge_type] # [b, v, h]
m = tf.reshape(m, [-1, v, h_dim]) # [b, v, h]
# collect the messages from other vertices to each vertice
if edge_type == 0:
acts = tf.matmul(adj[edge_type], m)
else:
acts += tf.matmul(adj[edge_type], m)
# all messages collected for each node
acts = tf.reshape(acts, [-1, h_dim]) # [b*v, h]
# add residual connection here
layer_residual_connections = self.params['residual_connections'].get(iter_idx)
if layer_residual_connections is None:
layer_residual_states = []
else:
layer_residual_states = [all_hidden_states[residual_layer_idx]
for residual_layer_idx in layer_residual_connections]
# concat current hidden states with residual states
acts= tf.concat([acts] + layer_residual_states, axis=1) # [b, (1+num residual connection)* h]
# feed msg inputs and hidden states to GRU
h = self.weights['node_gru'+scope_name+str(iter_idx)](acts, h)[1] # [b*v, h]
# record the new hidden states
all_hidden_states.append(h)
last_h = tf.reshape(all_hidden_states[-1], [-1, v, h_dim])
return last_h
def compute_final_node_representations_without_residual(self, h, adj, edge_weights, edge_biases, node_gru, gru_scope_name):
# h: initial representation, adj: adjacency matrix, different GNN parameters for encoder and decoder
v = self.placeholders['num_vertices']
if gru_scope_name=="gru_scope_decoder":
h_dim = self.params['hidden_size'] + self.params['hidden_size']
else:
h_dim = self.params['hidden_size']
h = tf.reshape(h, [-1, h_dim])
with tf.variable_scope(gru_scope_name) as scope:
for i in range(self.params['num_timesteps']):
if i > 0:
tf.get_variable_scope().reuse_variables()
for edge_type in range(self.num_edge_types):
m = tf.matmul(h, tf.nn.dropout(edge_weights[edge_type],
keep_prob=self.placeholders['edge_weight_dropout_keep_prob'])) # [b*v, h]
if self.params['use_edge_bias']:
m += edge_biases[edge_type] # [b, v, h]
m = tf.reshape(m, [-1, v, h_dim]) # [b, v, h]
if edge_type == 0:
acts = tf.matmul(adj[edge_type], m)
else:
acts += tf.matmul(adj[edge_type], m)
acts = tf.reshape(acts, [-1, h_dim]) # [b*v, h]
h = node_gru(acts, h)[1] # [b*v, h]
last_h = tf.reshape(h, [-1, v, h_dim])
return last_h
def compute_mean_and_logvariance(self):
h_dim = self.params['hidden_size']
reshped_last_h=tf.reshape(self.ops['final_node_representations'], [-1, h_dim])
mean=tf.matmul(reshped_last_h, self.weights['mean_weights']) + self.weights['mean_biases']
logvariance=tf.matmul(reshped_last_h, self.weights['variance_weights']) + self.weights['variance_biases']
return mean, logvariance
def sample_with_mean_and_logvariance(self):
v = self.placeholders['num_vertices']
h_dim = self.params['hidden_size']
# Sample from normal distribution
z_prior = tf.reshape(self.placeholders['z_prior'], [-1, h_dim])
# Train: sample from u, Sigma. Generation: sample from 0,1
z_sampled = tf.cond(self.placeholders['is_generative'], lambda: z_prior, # standard normal
lambda: tf.add(self.ops['mean'], tf.multiply(tf.sqrt(tf.exp(self.ops['logvariance'])), z_prior))) # non-standard normal
# filter
z_sampled = tf.reshape(z_sampled, [-1, v, h_dim]) * self.ops['graph_state_mask']
return z_sampled
def fully_connected(self, input, hidden_weight, hidden_bias, output_weight):
output=tf.nn.relu(tf.matmul(input, hidden_weight) + hidden_bias)
output=tf.matmul(output, output_weight)
return output
def generate_cross_entropy(self, idx, cross_entropy_losses, edge_predictions, edge_type_predictions):
v = self.placeholders['num_vertices']
h_dim = self.params['hidden_size']
num_symbols = self.params['num_symbols']
batch_size = tf.shape(self.placeholders['initial_node_representation'])[0]
# Use latent representation as decoder GNN'input
filtered_z_sampled = self.ops["initial_repre_for_decoder"] # [b, v, h+h]
# data needed in this iteration
incre_adj_mat = self.placeholders['incre_adj_mat'][:,idx,:,:, :] # [b, e, v, v]
distance_to_others = self.placeholders['distance_to_others'][:, idx, :] # [b,v]
overlapped_edge_features = self.placeholders['overlapped_edge_features'][:, idx, :] # [b,v]
node_sequence = self.placeholders['node_sequence'][:, idx, :] # [b, v]
node_sequence = tf.expand_dims(node_sequence, axis=2) # [b,v,1]
edge_type_masks = self.placeholders['edge_type_masks'][:, idx, :, :] # [b, e, v]
# make invalid locations to be very small before using softmax function
edge_type_masks = edge_type_masks * LARGE_NUMBER - LARGE_NUMBER
edge_type_labels = self.placeholders['edge_type_labels'][:, idx, :, :] # [b, e, v]
edge_masks=self.placeholders['edge_masks'][:, idx, :] # [b, v]
# make invalid locations to be very small before using softmax function
edge_masks = edge_masks * LARGE_NUMBER - LARGE_NUMBER
edge_labels = self.placeholders['edge_labels'][:, idx, :] # [b, v]
local_stop = self.placeholders['local_stop'][:, idx] # [b]
# concat the hidden states with the node in focus
filtered_z_sampled = tf.concat([filtered_z_sampled, node_sequence], axis=2) # [b, v, h + h + 1]
# Decoder GNN
if self.params["use_graph"]:
if self.params["residual_connection_on"]:
new_filtered_z_sampled = self.compute_final_node_representations_with_residual(filtered_z_sampled,
tf.transpose(incre_adj_mat, [1, 0, 2, 3]),
"_decoder") # [b, v, h + h]
else:
new_filtered_z_sampled = self.compute_final_node_representations_without_residual(filtered_z_sampled,
tf.transpose(incre_adj_mat, [1, 0, 2, 3]),
self.weights['edge_weights_decoder'],
self.weights['edge_biases_decoder'],
self.weights['node_gru_decoder'], "gru_scope_decoder") # [b, v, h + h]
else:
new_filtered_z_sampled = filtered_z_sampled
# Filter nonexist nodes
new_filtered_z_sampled=new_filtered_z_sampled * self.ops['graph_state_mask']
# Take out the node in focus
node_in_focus = tf.reduce_sum(node_sequence * new_filtered_z_sampled, axis=1)# [b, h + h]
# edge pair representation
edge_repr=tf.concat(\
[tf.tile(tf.expand_dims(node_in_focus, 1), [1,v,1]), new_filtered_z_sampled], axis=2) # [b, v, 2*(h+h)]
#combine edge repre with local and global repr
local_graph_repr_before_expansion = tf.reduce_sum(new_filtered_z_sampled, axis=1) / \
tf.reduce_sum(self.placeholders['node_mask'], axis=1, keep_dims=True) # [b, h + h]
local_graph_repr = tf.expand_dims(local_graph_repr_before_expansion, 1)
local_graph_repr = tf.tile(local_graph_repr, [1,v,1]) # [b, v, h+h]
global_graph_repr_before_expansion = tf.reduce_sum(filtered_z_sampled, axis=1) / \
tf.reduce_sum(self.placeholders['node_mask'], axis=1, keep_dims=True)
global_graph_repr = tf.expand_dims(global_graph_repr_before_expansion, 1)
global_graph_repr = tf.tile(global_graph_repr, [1,v,1]) # [b, v, h+h]
# distance representation
distance_repr = tf.nn.embedding_lookup(self.weights['distance_embedding'], distance_to_others) # [b, v, h+h]
# overlapped edge feature representation
overlapped_edge_repr = tf.nn.embedding_lookup(self.weights['overlapped_edge_weight'], overlapped_edge_features) # [b, v, h+h]
# concat and reshape.
combined_edge_repr = tf.concat([edge_repr, local_graph_repr,
global_graph_repr, distance_repr, overlapped_edge_repr], axis=2)
combined_edge_repr = tf.reshape(combined_edge_repr, [-1, self.params["feature_dimension"]*(h_dim + h_dim + 1)])
# Calculate edge logits
edge_logits=self.fully_connected(combined_edge_repr, self.weights['edge_iteration'],
self.weights['edge_iteration_biases'], self.weights['edge_iteration_output'])
edge_logits=tf.reshape(edge_logits, [-1, v]) # [b, v]
# filter invalid terms
edge_logits=edge_logits + edge_masks
# Calculate whether it will stop at this step
# prepare the data
expanded_stop_node = tf.tile(self.weights['stop_node'], [batch_size, 1]) # [b, h + h]
distance_to_stop_node = tf.nn.embedding_lookup(self.weights['distance_embedding'], tf.tile([0], [batch_size])) # [b, h + h]
overlap_edge_stop_node = tf.nn.embedding_lookup(self.weights['overlapped_edge_weight'], tf.tile([0], [batch_size])) # [b, h + h]
combined_stop_node_repr = tf.concat([node_in_focus, expanded_stop_node, local_graph_repr_before_expansion,
global_graph_repr_before_expansion, distance_to_stop_node, overlap_edge_stop_node], axis=1) # [b, 6 * (h + h)]
# logits for stop node
stop_logits = self.fully_connected(combined_stop_node_repr,
self.weights['edge_iteration'], self.weights['edge_iteration_biases'],
self.weights['edge_iteration_output']) #[b, 1]
edge_logits = tf.concat([edge_logits, stop_logits], axis=1) # [b, v + 1]
# Calculate edge type logits
edge_type_logits = []
for i in range(self.num_edge_types):
edge_type_logit = self.fully_connected(combined_edge_repr,
self.weights['edge_type_%d' % i], self.weights['edge_type_biases_%d' % i],
self.weights['edge_type_output_%d' % i]) #[b * v, 1]
edge_type_logits.append(tf.reshape(edge_type_logit, [-1, 1, v])) # [b, 1, v]
edge_type_logits = tf.concat(edge_type_logits, axis=1) # [b, e, v]
# filter invalid items
edge_type_logits = edge_type_logits + edge_type_masks # [b, e, v]
# softmax over edge type axis
edge_type_probs = tf.nn.softmax(edge_type_logits, 1) # [b, e, v]
# edge labels
edge_labels = tf.concat([edge_labels,tf.expand_dims(local_stop, 1)], axis=1) # [b, v + 1]
# softmax for edge
edge_loss =- tf.reduce_sum(tf.log(tf.nn.softmax(edge_logits) + SMALL_NUMBER) * edge_labels, axis=1)
# softmax for edge type
edge_type_loss =- edge_type_labels * tf.log(edge_type_probs + SMALL_NUMBER) # [b, e, v]
edge_type_loss = tf.reduce_sum(edge_type_loss, axis=[1, 2]) # [b]
# total loss
iteration_loss = edge_loss + edge_type_loss
cross_entropy_losses = cross_entropy_losses.write(idx, iteration_loss)
edge_predictions = edge_predictions.write(idx, tf.nn.softmax(edge_logits))
edge_type_predictions = edge_type_predictions.write(idx, edge_type_probs)
return (idx+1, cross_entropy_losses, edge_predictions, edge_type_predictions)
def construct_logit_matrices(self):
v = self.placeholders['num_vertices']
batch_size=tf.shape(self.placeholders['initial_node_representation'])[0]
h_dim = self.params['hidden_size']
# Initial state: embedding
latent_node_state= self.get_node_embedding_state(self.placeholders["latent_node_symbols"])
# concat z_sampled with node symbols
filtered_z_sampled = tf.concat([self.ops['z_sampled'],
latent_node_state], axis=2) # [b, v, h + h]
self.ops["initial_repre_for_decoder"] = filtered_z_sampled
# The tensor array used to collect the cross entropy losses at each step
cross_entropy_losses = tf.TensorArray(dtype=tf.float32, size=self.placeholders['max_iteration_num'])
edge_predictions= tf.TensorArray(dtype=tf.float32, size=self.placeholders['max_iteration_num'])
edge_type_predictions = tf.TensorArray(dtype=tf.float32, size=self.placeholders['max_iteration_num'])
idx_final, cross_entropy_losses_final, edge_predictions_final,edge_type_predictions_final=\
tf.while_loop(lambda idx, cross_entropy_losses,edge_predictions,edge_type_predictions: idx < self.placeholders['max_iteration_num'],
self.generate_cross_entropy,
(tf.constant(0), cross_entropy_losses,edge_predictions,edge_type_predictions,))
# record the predictions for generation
self.ops['edge_predictions'] = edge_predictions_final.read(0)
self.ops['edge_type_predictions'] = edge_type_predictions_final.read(0)
# final cross entropy losses
cross_entropy_losses_final = cross_entropy_losses_final.stack()
self.ops['cross_entropy_losses'] = tf.transpose(cross_entropy_losses_final, [1,0]) # [b, es]
# Logits for node symbols
self.ops['node_symbol_logits']=tf.reshape(tf.matmul(tf.reshape(self.ops['z_sampled'],[-1, h_dim]), self.weights['node_symbol_weights']) +
self.weights['node_symbol_biases'], [-1, v, self.params['num_symbols']])
def construct_loss(self):
v = self.placeholders['num_vertices']
h_dim = self.params['hidden_size']
kl_trade_off_lambda =self.placeholders['kl_trade_off_lambda']
# Edge loss
self.ops["edge_loss"] = tf.reduce_sum(self.ops['cross_entropy_losses'] * self.placeholders['iteration_mask'], axis=1)
# KL loss
kl_loss = 1 + self.ops['logvariance'] - tf.square(self.ops['mean']) - tf.exp(self.ops['logvariance'])
kl_loss = tf.reshape(kl_loss, [-1, v, h_dim]) * self.ops['graph_state_mask']
self.ops['kl_loss'] = -0.5 * tf.reduce_sum(kl_loss, [1,2])
# Node symbol loss
self.ops['node_symbol_prob'] = tf.nn.softmax(self.ops['node_symbol_logits'])
self.ops['node_symbol_loss'] = -tf.reduce_sum(tf.log(self.ops['node_symbol_prob'] + SMALL_NUMBER) *
self.placeholders['node_symbols'], axis=[1,2])
# Add in the loss for calculating QED
for (internal_id, task_id) in enumerate(self.params['task_ids']):
with tf.variable_scope("out_layer_task%i" % task_id):
with tf.variable_scope("regression_gate"):
self.weights['regression_gate_task%i' % task_id] = MLP(self.params['hidden_size'], 1, [],
self.placeholders['out_layer_dropout_keep_prob'])
with tf.variable_scope("regression"):
self.weights['regression_transform_task%i' % task_id] = MLP(self.params['hidden_size'], 1, [],
self.placeholders['out_layer_dropout_keep_prob'])
normalized_z_sampled=tf.nn.l2_normalize(self.ops['z_sampled'], 2)
self.ops['qed_computed_values']=computed_values = self.gated_regression(normalized_z_sampled,
self.weights['regression_gate_task%i' % task_id],
self.weights['regression_transform_task%i' % task_id], self.params["hidden_size"],
self.weights['qed_weights'], self.weights['qed_biases'],
self.placeholders['num_vertices'], self.placeholders['node_mask'])
diff = computed_values - self.placeholders['target_values'][internal_id,:] # [b]
task_target_mask = self.placeholders['target_mask'][internal_id,:]
task_target_num = tf.reduce_sum(task_target_mask) + SMALL_NUMBER
diff = diff * task_target_mask # Mask out unused values [b]
self.ops['accuracy_task%i' % task_id] = tf.reduce_sum(tf.abs(diff)) / task_target_num
task_loss = tf.reduce_sum(0.5 * tf.square(diff)) / task_target_num # number
# Normalise loss to account for fewer task-specific examples in batch:
task_loss = task_loss * (1.0 / (self.params['task_sample_ratios'].get(task_id) or 1.0))
self.ops['qed_loss'].append(task_loss)
if task_id ==0: # Assume it is the QED score
z_sampled_shape=tf.shape(self.ops['z_sampled'])
flattened_z_sampled=tf.reshape(self.ops['z_sampled'], [z_sampled_shape[0], -1])
self.ops['l2_loss'] = 0.01* tf.reduce_sum(flattened_z_sampled * flattened_z_sampled, axis=1) /2
# Calculate the derivative with respect to QED + l2 loss
self.ops['derivative_z_sampled'] = tf.gradients(self.ops['qed_computed_values'] -
self.ops['l2_loss'],self.ops['z_sampled'])
self.ops['total_qed_loss'] = tf.reduce_sum(self.ops['qed_loss']) # number
self.ops['mean_edge_loss'] = tf.reduce_mean(self.ops["edge_loss"]) # record the mean edge loss
self.ops['mean_node_symbol_loss'] = tf.reduce_mean(self.ops["node_symbol_loss"])
self.ops['mean_kl_loss'] = tf.reduce_mean(kl_trade_off_lambda *self.ops['kl_loss'])
self.ops['mean_total_qed_loss'] = self.params["qed_trade_off_lambda"]*self.ops['total_qed_loss']
return tf.reduce_mean(self.ops["edge_loss"] + self.ops['node_symbol_loss'] + \
kl_trade_off_lambda *self.ops['kl_loss'])\
+ self.params["qed_trade_off_lambda"]*self.ops['total_qed_loss']
def gated_regression(self, last_h, regression_gate, regression_transform, hidden_size, projection_weight, projection_bias, v, mask):
# last_h: [b x v x h]
last_h = tf.reshape(last_h, [-1, hidden_size]) # [b*v, h]
# linear projection on last_h
last_h = tf.nn.relu(tf.matmul(last_h, projection_weight)+projection_bias) # [b*v, h]
# same as last_h
gate_input = last_h
# linear projection and combine
gated_outputs = tf.nn.sigmoid(regression_gate(gate_input)) * tf.nn.tanh(regression_transform(last_h)) # [b*v, 1]
gated_outputs = tf.reshape(gated_outputs, [-1, v]) # [b, v]
masked_gated_outputs = gated_outputs * mask # [b x v]
output = tf.reduce_sum(masked_gated_outputs, axis = 1) # [b]
output=tf.sigmoid(output)
return output
def calculate_incremental_results(self, raw_data, bucket_sizes, file_name):
incremental_results=[]
# copy the raw_data if more than 1 BFS path is added
new_raw_data=[]
for idx, d in enumerate(raw_data):
# Use canonical order or random order here. canonical order starts from index 0. random order starts from random nodes
if not self.params["path_random_order"]:
# Use several different starting index if using multi BFS path
if self.params["multi_bfs_path"]:
list_of_starting_idx= list(range(self.params["bfs_path_count"]))
else:
list_of_starting_idx=[0] # the index 0
else:
# get the node length for this molecule
node_length=len(d["node_features"])
if self.params["multi_bfs_path"]:
list_of_starting_idx= np.random.choice(node_length, self.params["bfs_path_count"], replace=True) #randomly choose several
else:
list_of_starting_idx= [random.choice(list(range(node_length)))] # randomly choose one
for list_idx, starting_idx in enumerate(list_of_starting_idx):
# choose a bucket
chosen_bucket_idx = np.argmax(bucket_sizes > max([v for e in d['graph']
for v in [e[0], e[2]]]))
chosen_bucket_size = bucket_sizes[chosen_bucket_idx]
# Calculate incremental results without master node
nodes_no_master, edges_no_master = to_graph(d['smiles'], self.params["dataset"])
incremental_adj_mat,distance_to_others,node_sequence,edge_type_masks,edge_type_labels,local_stop, edge_masks, edge_labels, overlapped_edge_features=\
construct_incremental_graph(dataset, edges_no_master, chosen_bucket_size,
len(nodes_no_master), nodes_no_master, self.params, initial_idx=starting_idx)
if self.params["sample_transition"] and list_idx > 0:
incremental_results[-1]=[x+y for x, y in zip(incremental_results[-1], [incremental_adj_mat,distance_to_others,
node_sequence,edge_type_masks,edge_type_labels,local_stop, edge_masks, edge_labels, overlapped_edge_features])]
else:
incremental_results.append([incremental_adj_mat, distance_to_others, node_sequence, edge_type_masks,
edge_type_labels, local_stop, edge_masks, edge_labels, overlapped_edge_features])
# copy the raw_data here
new_raw_data.append(d)
if idx % 50 == 0:
print('finish calculating %d incremental matrices' % idx, end="\r")
return incremental_results, new_raw_data
# ----- Data preprocessing and chunking into minibatches:
def process_raw_graphs(self, raw_data, is_training_data, file_name, bucket_sizes=None):
if bucket_sizes is None:
bucket_sizes = dataset_info(self.params["dataset"])["bucket_sizes"]
incremental_results, raw_data=self.calculate_incremental_results(raw_data, bucket_sizes, file_name)
bucketed = defaultdict(list)
x_dim = len(raw_data[0]["node_features"][0])
for d, (incremental_adj_mat,distance_to_others,node_sequence,edge_type_masks,edge_type_labels,local_stop, edge_masks, edge_labels, overlapped_edge_features)\
in zip(raw_data, incremental_results):
# choose a bucket
chosen_bucket_idx = np.argmax(bucket_sizes > max([v for e in d['graph']
for v in [e[0], e[2]]]))
chosen_bucket_size = bucket_sizes[chosen_bucket_idx]
# total number of nodes in this data point
n_active_nodes = len(d["node_features"])
bucketed[chosen_bucket_idx].append({
'adj_mat': graph_to_adj_mat(d['graph'], chosen_bucket_size, self.num_edge_types, self.params['tie_fwd_bkwd']),
'incre_adj_mat': incremental_adj_mat,
'distance_to_others': distance_to_others,
'overlapped_edge_features': overlapped_edge_features,
'node_sequence': node_sequence,
'edge_type_masks': edge_type_masks,
'edge_type_labels': edge_type_labels,
'edge_masks': edge_masks,
'edge_labels': edge_labels,
'local_stop': local_stop,
'number_iteration': len(local_stop),
'init': d["node_features"] + [[0 for _ in range(x_dim)] for __ in
range(chosen_bucket_size - n_active_nodes)],
'labels': [d["targets"][task_id][0] for task_id in self.params['task_ids']],
'mask': [1. for _ in range(n_active_nodes) ] + [0. for _ in range(chosen_bucket_size - n_active_nodes)]
})
if is_training_data:
for (bucket_idx, bucket) in bucketed.items():
np.random.shuffle(bucket)
for task_id in self.params['task_ids']:
task_sample_ratio = self.params['task_sample_ratios'].get(str(task_id))
if task_sample_ratio is not None:
ex_to_sample = int(len(bucket) * task_sample_ratio)
for ex_id in range(ex_to_sample, len(bucket)):
bucket[ex_id]['labels'][task_id] = None
bucket_at_step = [[bucket_idx for _ in range(len(bucket_data) // self.params['batch_size'])]
for bucket_idx, bucket_data in bucketed.items()]
bucket_at_step = [x for y in bucket_at_step for x in y]
return (bucketed, bucket_sizes, bucket_at_step)
def pad_annotations(self, annotations):
return np.pad(annotations,
pad_width=[[0, 0], [0, 0], [0, self.params['hidden_size'] - self.params["num_symbols"]]],
mode='constant')
def make_batch(self, elements, maximum_vertice_num):
# get maximum number of iterations in this batch. used to control while_loop
max_iteration_num=-1
for d in elements:
max_iteration_num=max(d['number_iteration'], max_iteration_num)
batch_data = {'adj_mat': [], 'init': [], 'labels': [], 'edge_type_masks':[], 'edge_type_labels':[], 'edge_masks':[],
'edge_labels':[],'node_mask': [], 'task_masks': [], 'node_sequence':[],
'iteration_mask': [], 'local_stop': [], 'incre_adj_mat': [], 'distance_to_others': [],
'max_iteration_num': max_iteration_num, 'overlapped_edge_features': []}
for d in elements:
# sparse to dense for saving memory
incre_adj_mat = incre_adj_mat_to_dense(d['incre_adj_mat'], self.num_edge_types, maximum_vertice_num)
distance_to_others = distance_to_others_dense(d['distance_to_others'], maximum_vertice_num)
overlapped_edge_features = overlapped_edge_features_to_dense(d['overlapped_edge_features'], maximum_vertice_num)
node_sequence = node_sequence_to_dense(d['node_sequence'],maximum_vertice_num)
edge_type_masks = edge_type_masks_to_dense(d['edge_type_masks'], maximum_vertice_num,self.num_edge_types)
edge_type_labels = edge_type_labels_to_dense(d['edge_type_labels'], maximum_vertice_num,self.num_edge_types)
edge_masks = edge_masks_to_dense(d['edge_masks'], maximum_vertice_num)
edge_labels = edge_labels_to_dense(d['edge_labels'], maximum_vertice_num)
batch_data['adj_mat'].append(d['adj_mat'])
batch_data['init'].append(d['init'])
batch_data['node_mask'].append(d['mask'])
batch_data['incre_adj_mat'].append(incre_adj_mat +
[np.zeros((self.num_edge_types, maximum_vertice_num,maximum_vertice_num))
for _ in range(max_iteration_num-d['number_iteration'])])
batch_data['distance_to_others'].append(distance_to_others +
[np.zeros((maximum_vertice_num))
for _ in range(max_iteration_num-d['number_iteration'])])
batch_data['overlapped_edge_features'].append(overlapped_edge_features +
[np.zeros((maximum_vertice_num))
for _ in range(max_iteration_num-d['number_iteration'])])
batch_data['node_sequence'].append(node_sequence +
[np.zeros((maximum_vertice_num))
for _ in range(max_iteration_num-d['number_iteration'])])
batch_data['edge_type_masks'].append(edge_type_masks +
[np.zeros((self.num_edge_types, maximum_vertice_num))
for _ in range(max_iteration_num-d['number_iteration'])])
batch_data['edge_masks'].append(edge_masks +
[np.zeros((maximum_vertice_num))
for _ in range(max_iteration_num-d['number_iteration'])])
batch_data['edge_type_labels'].append(edge_type_labels +
[np.zeros((self.num_edge_types, maximum_vertice_num))
for _ in range(max_iteration_num-d['number_iteration'])])
batch_data['edge_labels'].append(edge_labels +
[np.zeros((maximum_vertice_num))
for _ in range(max_iteration_num-d['number_iteration'])])
batch_data['iteration_mask'].append([1 for _ in range(d['number_iteration'])]+
[0 for _ in range(max_iteration_num-d['number_iteration'])])
batch_data['local_stop'].append([int(s) for s in d["local_stop"]]+
[0 for _ in range(max_iteration_num-d['number_iteration'])])
target_task_values = []
target_task_mask = []
for target_val in d['labels']:
if target_val is None: # This is one of the examples we didn't sample...
target_task_values.append(0.)
target_task_mask.append(0.)
else:
target_task_values.append(target_val)
target_task_mask.append(1.)
batch_data['labels'].append(target_task_values)
batch_data['task_masks'].append(target_task_mask)
return batch_data
def get_dynamic_feed_dict(self, elements, latent_node_symbol, incre_adj_mat, num_vertices,
distance_to_others, overlapped_edge_dense, node_sequence, edge_type_masks, edge_masks, random_normal_states):
if incre_adj_mat is None:
incre_adj_mat=np.zeros((1, 1, self.num_edge_types, 1, 1))
distance_to_others=np.zeros((1,1,1))
overlapped_edge_dense=np.zeros((1,1,1))
node_sequence=np.zeros((1,1,1))
edge_type_masks=np.zeros((1,1,self.num_edge_types,1))
edge_masks=np.zeros((1,1,1))
latent_node_symbol=np.zeros((1,1,self.params["num_symbols"]))
return {
self.placeholders['z_prior']: random_normal_states, # [1, v, h]
self.placeholders['incre_adj_mat']: incre_adj_mat, # [1, 1, e, v, v]
self.placeholders['num_vertices']: num_vertices, # v
self.placeholders['initial_node_representation']: \
self.pad_annotations([elements['init']]),
self.placeholders['node_symbols']: [elements['init']],
self.placeholders['latent_node_symbols']: self.pad_annotations(latent_node_symbol),
self.placeholders['adjacency_matrix']: [elements['adj_mat']],
self.placeholders['node_mask']: [elements['mask']],
self.placeholders['graph_state_keep_prob']: 1,
self.placeholders['edge_weight_dropout_keep_prob']: 1,
self.placeholders['iteration_mask']: [[1]],
self.placeholders['is_generative']: True,
self.placeholders['out_layer_dropout_keep_prob'] : 1.0,
self.placeholders['distance_to_others'] : distance_to_others, # [1, 1,v]
self.placeholders['overlapped_edge_features']: overlapped_edge_dense,
self.placeholders['max_iteration_num']: 1,
self.placeholders['node_sequence']: node_sequence, #[1, 1, v]
self.placeholders['edge_type_masks']: edge_type_masks, #[1, 1, e, v]
self.placeholders['edge_masks']: edge_masks, # [1, 1, v]
}
def get_node_symbol(self, batch_feed_dict):
fetch_list = [self.ops['node_symbol_prob']]
result = self.sess.run(fetch_list, feed_dict=batch_feed_dict)
return result[0]
def node_symbol_one_hot(self, sampled_node_symbol, real_n_vertices, max_n_vertices):
one_hot_representations=[]
for idx in range(max_n_vertices):
representation = [0] * self.params["num_symbols"]
if idx < real_n_vertices:
atom_type=sampled_node_symbol[idx]
representation[atom_type]=1
one_hot_representations.append(representation)
return one_hot_representations
def search_and_generate_molecule(self, initial_idx, valences,
sampled_node_symbol, real_n_vertices, random_normal_states,
elements, max_n_vertices):
# New molecule
new_mol = Chem.MolFromSmiles('')
new_mol = Chem.rdchem.RWMol(new_mol)
# Add atoms
add_atoms(new_mol, sampled_node_symbol, self.params["dataset"])
# Breadth first search over the molecule
queue=deque([initial_idx])
# color 0: have not found 1: in the queue 2: searched already
color = [0] * max_n_vertices
color[initial_idx] = 1
# Empty adj list at the beginning
incre_adj_list=defaultdict(list)
# record the log probabilities at each step
total_log_prob=0
while len(queue) > 0:
node_in_focus = queue.popleft()
# iterate until the stop node is selected
while True:
# Prepare data for one iteration based on the graph state
edge_type_mask_sparse, edge_mask_sparse = generate_mask(valences, incre_adj_list, color, real_n_vertices, node_in_focus, self.params["check_overlap_edge"], new_mol)
edge_type_mask = edge_type_masks_to_dense([edge_type_mask_sparse], max_n_vertices, self.num_edge_types) # [1, e, v]
edge_mask = edge_masks_to_dense([edge_mask_sparse],max_n_vertices) # [1, v]
node_sequence = node_sequence_to_dense([node_in_focus], max_n_vertices) # [1, v]
distance_to_others_sparse = bfs_distance(node_in_focus, incre_adj_list)
distance_to_others = distance_to_others_dense([distance_to_others_sparse],max_n_vertices) # [1, v]
overlapped_edge_sparse = get_overlapped_edge_feature(edge_mask_sparse, color, new_mol)
overlapped_edge_dense = overlapped_edge_features_to_dense([overlapped_edge_sparse],max_n_vertices) # [1, v]
incre_adj_mat = incre_adj_mat_to_dense([incre_adj_list],
self.num_edge_types, max_n_vertices) # [1, e, v, v]
sampled_node_symbol_one_hot = self.node_symbol_one_hot(sampled_node_symbol, real_n_vertices, max_n_vertices)
# get feed_dict
feed_dict=self.get_dynamic_feed_dict(elements, [sampled_node_symbol_one_hot],
[incre_adj_mat], max_n_vertices, [distance_to_others], [overlapped_edge_dense],
[node_sequence], [edge_type_mask], [edge_mask], random_normal_states)
# fetch nn predictions
fetch_list = [self.ops['edge_predictions'], self.ops['edge_type_predictions']]
edge_probs, edge_type_probs = self.sess.run(fetch_list, feed_dict=feed_dict)
# select an edge
if not self.params["use_argmax_generation"]:
neighbor=np.random.choice(np.arange(max_n_vertices+1), p=edge_probs[0])
else:
neighbor=np.argmax(edge_probs[0])
# update log prob
total_log_prob+=np.log(edge_probs[0][neighbor]+SMALL_NUMBER)
# stop it if stop node is picked
if neighbor == max_n_vertices:
break
# or choose an edge type
if not self.params["use_argmax_generation"]:
bond=np.random.choice(np.arange(self.num_edge_types),p=edge_type_probs[0, :, neighbor])
else:
bond=np.argmax(edge_type_probs[0, :, neighbor])
# update log prob
total_log_prob+=np.log(edge_type_probs[0, :, neighbor][bond]+SMALL_NUMBER)
#update valences
valences[node_in_focus] -= (bond+1)
valences[neighbor] -= (bond+1)
#add the bond
new_mol.AddBond(int(node_in_focus), int(neighbor), number_to_bond[bond])
# add the edge to increment adj list
incre_adj_list[node_in_focus].append((neighbor, bond))
incre_adj_list[neighbor].append((node_in_focus, bond))
# Explore neighbor nodes
if color[neighbor]==0:
queue.append(neighbor)
color[neighbor]=1
color[node_in_focus]=2 # explored
# Remove unconnected node
remove_extra_nodes(new_mol)
new_mol=Chem.MolFromSmiles(Chem.MolToSmiles(new_mol))
return new_mol, total_log_prob
def gradient_ascent(self, random_normal_states, derivative_z_sampled):
return random_normal_states + self.params['prior_learning_rate'] * derivative_z_sampled
# optimization in latent space. generate one molecule for each optimization step
def optimization_over_prior(self, random_normal_states, num_vertices, generated_all_similes, elements, count):
# record how many optimization steps are taken
step=0
# generate a new molecule
self.generate_graph_with_state(random_normal_states, num_vertices, generated_all_similes, elements, step, count)
fetch_list = [self.ops['derivative_z_sampled'], self.ops['qed_computed_values'], self.ops['l2_loss']]
for _ in range(self.params['optimization_step']):
# get current qed and derivative
batch_feed_dict=self.get_dynamic_feed_dict(elements, None, None, num_vertices, None,
None, None, None, None,
random_normal_states)
derivative_z_sampled, qed_computed_values, l2_loss= self.sess.run(fetch_list, feed_dict=batch_feed_dict)
# update the states
random_normal_states=self.gradient_ascent(random_normal_states,
derivative_z_sampled[0])
# generate a new molecule
step+=1
self.generate_graph_with_state(random_normal_states, num_vertices,
generated_all_similes, elements, step, count)
return random_normal_states
def generate_graph_with_state(self, random_normal_states, num_vertices,
generated_all_similes, elements, step, count):
# Get back node symbol predictions
# Prepare dict
node_symbol_batch_feed_dict=self.get_dynamic_feed_dict(elements, None, None,
num_vertices, None, None, None, None, None, random_normal_states)
# Get predicted node probs
predicted_node_symbol_prob=self.get_node_symbol(node_symbol_batch_feed_dict)
# Node numbers for each graph
real_length=get_graph_length([elements['mask']])[0] # [valid_node_number]
# Sample node symbols
sampled_node_symbol=sample_node_symbol(predicted_node_symbol_prob, [real_length], self.params["dataset"])[0] # [v]
# Maximum valences for each node
valences=get_initial_valence(sampled_node_symbol, self.params["dataset"]) # [v]
# randomly pick the starting point or use zero
if not self.params["path_random_order"]:
# Try different starting points
if self.params["try_different_starting"]:
#starting_point=list(range(self.params["num_different_starting"]))
starting_point=random.sample(range(real_length),
min(self.params["num_different_starting"], real_length))
else:
starting_point=[0]
else:
if self.params["try_different_starting"]:
starting_point=random.sample(range(real_length),
min(self.params["num_different_starting"], real_length))
else:
starting_point=[random.choice(list(range(real_length)))] # randomly choose one
# record all molecules from different starting points
all_mol=[]
for idx in starting_point:
# generate a new molecule
new_mol, total_log_prob=self.search_and_generate_molecule(idx, np.copy(valences),
sampled_node_symbol, real_length,
random_normal_states, elements, num_vertices)
# record the molecule with largest number of shapes
if dataset=='qm9' and new_mol is not None:
all_mol.append((np.sum(shape_count(self.params["dataset"], True,
[Chem.MolToSmiles(new_mol)])[1]), total_log_prob, new_mol))
# record the molecule with largest number of pentagon and hexagonal for zinc and cep
elif dataset=='zinc' and new_mol is not None:
counts=shape_count(self.params["dataset"], True,[Chem.MolToSmiles(new_mol)])
all_mol.append((0.5 * counts[1][2]+ counts[1][3], total_log_prob, new_mol))
elif dataset=='cep' and new_mol is not None:
all_mol.append((np.sum(shape_count(self.params["dataset"], True,
[Chem.MolToSmiles(new_mol)])[1][2:]), total_log_prob, new_mol))
# select one out
best_mol = select_best(all_mol)
# nothing generated
if best_mol is None:
return
# visualize it
make_dir('visualization_%s' % dataset)
visualize_mol('visualization_%s/%d_%d.png' % (dataset, count, step), best_mol)
# record the best molecule
generated_all_similes.append(Chem.MolToSmiles(best_mol))
dump('generated_smiles_%s' % (dataset), generated_all_similes)
print("Real QED value")
print(QED.qed(best_mol))
if len(generated_all_similes) >= self.params['number_of_generation']:
print("generation done")
exit(0)
def compensate_node_length(self, elements, bucket_size):
maximum_length=bucket_size+self.params["compensate_num"]
real_length=get_graph_length([elements['mask']])[0]+self.params["compensate_num"]
elements['mask']=[1]*real_length + [0]*(maximum_length-real_length)
elements['init']=np.zeros((maximum_length, self.params["num_symbols"]))
elements['adj_mat']=np.zeros((self.num_edge_types, maximum_length, maximum_length))
return maximum_length
def generate_new_graphs(self, data):
# bucketed: data organized by bucket
(bucketed, bucket_sizes, bucket_at_step) = data
bucket_counters = defaultdict(int)
# all generated similes
generated_all_similes=[]
# counter
count = 0
# shuffle the lengths
np.random.shuffle(bucket_at_step)
for step in range(len(bucket_at_step)):
bucket = bucket_at_step[step] # bucket number
# data index
start_idx = bucket_counters[bucket] * self.params['batch_size']
end_idx = (bucket_counters[bucket] + 1) * self.params['batch_size']
# batch data
elements_batch = bucketed[bucket][start_idx:end_idx]
for elements in elements_batch:
# compensate for the length during generation
# (this is a result that BFS may not make use of all candidate nodes during generation)
maximum_length=self.compensate_node_length(elements, bucket_sizes[bucket])
# initial state
random_normal_states=generate_std_normal(1, maximum_length,\
self.params['hidden_size']) # [1, v, h]
random_normal_states = self.optimization_over_prior(random_normal_states,
maximum_length, generated_all_similes,elements, count)
count+=1
bucket_counters[bucket] += 1
def make_minibatch_iterator(self, data, is_training: bool):
(bucketed, bucket_sizes, bucket_at_step) = data
if is_training:
np.random.shuffle(bucket_at_step)
for _, bucketed_data in bucketed.items():
np.random.shuffle(bucketed_data)
bucket_counters = defaultdict(int)
dropout_keep_prob = self.params['graph_state_dropout_keep_prob'] if is_training else 1.
edge_dropout_keep_prob = self.params['edge_weight_dropout_keep_prob'] if is_training else 1.
for step in range(len(bucket_at_step)):
bucket = bucket_at_step[step]
start_idx = bucket_counters[bucket] * self.params['batch_size']
end_idx = (bucket_counters[bucket] + 1) * self.params['batch_size']
elements = bucketed[bucket][start_idx:end_idx]
batch_data = self.make_batch(elements, bucket_sizes[bucket])
num_graphs = len(batch_data['init'])
initial_representations = batch_data['init']
initial_representations = self.pad_annotations(initial_representations)
batch_feed_dict = {
self.placeholders['initial_node_representation']: initial_representations,
self.placeholders['node_symbols']: batch_data['init'],
self.placeholders['latent_node_symbols']: initial_representations,
self.placeholders['target_values']: np.transpose(batch_data['labels'], axes=[1,0]),
self.placeholders['target_mask']: np.transpose(batch_data['task_masks'], axes=[1, 0]),
self.placeholders['num_graphs']: num_graphs,
self.placeholders['num_vertices']: bucket_sizes[bucket],
self.placeholders['adjacency_matrix']: batch_data['adj_mat'],
self.placeholders['node_mask']: batch_data['node_mask'],
self.placeholders['graph_state_keep_prob']: dropout_keep_prob,
self.placeholders['edge_weight_dropout_keep_prob']: edge_dropout_keep_prob,
self.placeholders['iteration_mask']: batch_data['iteration_mask'],
self.placeholders['incre_adj_mat']: batch_data['incre_adj_mat'],
self.placeholders['distance_to_others']: batch_data['distance_to_others'],
self.placeholders['node_sequence']: batch_data['node_sequence'],
self.placeholders['edge_type_masks']: batch_data['edge_type_masks'],