-
Notifications
You must be signed in to change notification settings - Fork 435
/
Copy pathomniparser.py
60 lines (49 loc) · 2.58 KB
/
omniparser.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
from utils import get_som_labeled_img, check_ocr_box, get_caption_model_processor, get_dino_model, get_yolo_model
import torch
from ultralytics import YOLO
from PIL import Image
from typing import Dict, Tuple, List
import io
import base64
config = {
'som_model_path': 'finetuned_icon_detect.pt',
'device': 'cpu',
'caption_model_path': 'Salesforce/blip2-opt-2.7b',
'draw_bbox_config': {
'text_scale': 0.8,
'text_thickness': 2,
'text_padding': 3,
'thickness': 3,
},
'BOX_TRESHOLD': 0.05
}
class Omniparser(object):
def __init__(self, config: Dict):
self.config = config
self.som_model = get_yolo_model(model_path=config['som_model_path'])
# self.caption_model_processor = get_caption_model_processor(config['caption_model_path'], device=cofig['device'])
# self.caption_model_processor['model'].to(torch.float32)
def parse(self, image_path: str):
print('Parsing image:', image_path)
ocr_bbox_rslt, is_goal_filtered = check_ocr_box(image_path, display_img = False, output_bb_format='xyxy', goal_filtering=None, easyocr_args={'paragraph': False, 'text_threshold':0.9})
text, ocr_bbox = ocr_bbox_rslt
draw_bbox_config = self.config['draw_bbox_config']
BOX_TRESHOLD = self.config['BOX_TRESHOLD']
dino_labled_img, label_coordinates, parsed_content_list = get_som_labeled_img(image_path, self.som_model, BOX_TRESHOLD = BOX_TRESHOLD, output_coord_in_ratio=False, ocr_bbox=ocr_bbox,draw_bbox_config=draw_bbox_config, caption_model_processor=None, ocr_text=text,use_local_semantics=False)
image = Image.open(io.BytesIO(base64.b64decode(dino_labled_img)))
# formating output
return_list = [{'from': 'omniparser', 'shape': {'x':coord[0], 'y':coord[1], 'width':coord[2], 'height':coord[3]},
'text': parsed_content_list[i].split(': ')[1], 'type':'text'} for i, (k, coord) in enumerate(label_coordinates.items()) if i < len(parsed_content_list)]
return_list.extend(
[{'from': 'omniparser', 'shape': {'x':coord[0], 'y':coord[1], 'width':coord[2], 'height':coord[3]},
'text': 'None', 'type':'icon'} for i, (k, coord) in enumerate(label_coordinates.items()) if i >= len(parsed_content_list)]
)
return [image, return_list]
parser = Omniparser(config)
image_path = 'examples/pc_1.png'
# time the parser
import time
s = time.time()
image, parsed_content_list = parser.parse(image_path)
device = config['device']
print(f'Time taken for Omniparser on {device}:', time.time() - s)