-
Notifications
You must be signed in to change notification settings - Fork 341
/
prepro.py
221 lines (197 loc) · 7.01 KB
/
prepro.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.
"""
preprocess input data into feature and stores binary as python shelve DB
each chunk is gzipped JSON string
"""
import argparse
import gzip
import json
import subprocess as sp
import shelve
import os
from os.path import dirname, exists, join
import torch
from lsp_model import GPT2Tokenizer
from tqdm import tqdm
from env import END_OF_TEXT_TOKEN
from gpt2_training.train_utils import InputFeatures_train as InputFeatures
def _get_file_len(corpus):
n_line = int(sp.check_output(f"wc -l {corpus}".split(),
universal_newlines=True).split()[0])
return n_line
def _norm_text(text):
w, *toks = text.strip().split()
try:
w = float(w)
except Exception:
toks = [w] + toks
w = 1.0
return w, ' '.join(toks)
def _get_inputs_from_text(text, tokenizer):
srcs, tgt = text.strip().split('\t')
weights = []
inputs = []
for src in srcs.split(' EOS '):
src_weight, src = _norm_text(src)
context_id = tokenizer.encode(src)
weights.append(src_weight)
inputs.append(context_id)
tgt_weight, tgt = _norm_text(tgt)
if tgt_weight != 0:
response_id = tokenizer.encode(tgt)
weights.append(tgt_weight)
inputs.append(response_id)
return weights, inputs
def _make_features(id_, weights, inputs, tokenizer, max_len):
end_of_text_id = tokenizer.encoder[END_OF_TEXT_TOKEN]
features = []
sents = []
ws = []
len_ = 0
i = 0
for ids, w in zip(inputs, weights):
if len(ids) > max_len:
if len(sents) >= 2:
feat = _make_feature(id_ + i, sents, ws, end_of_text_id)
if feat is not None:
features.append(feat)
i += 1
len_ = 0
sents = []
ws = []
continue
elif len_ > max_len:
feat = _make_feature(id_ + i, sents, ws, end_of_text_id)
if feat is not None:
features.append(feat)
i += 1
len_ = len(sents[-1]) + 1
sents = sents[-1:]
ws = ws[-1:]
len_ += (len(ids) + 1)
sents.append(ids)
ws.append(w)
if len(sents) >= 2:
feat = _make_feature(id_ + i, sents, ws, end_of_text_id)
if feat is not None:
features.append(feat)
return features
def _make_feature(id_, sents, ws, eos):
if all(w == 0 for w in ws[1:]):
return None
input_ids = [i for s in sents for i in s+[eos]][:-1]
lm_labels = []
weights = []
token_type_ids = [] # this becomes round ids
for i, (s, w) in enumerate(zip(sents, ws)):
if i == 0:
lm_labels += [-1] * len(s)
weights += [0.0] * len(s)
token_type_ids += [0] * len(s)
continue
token_type_ids += [i] * (len(s) + 1)
if w == 0.0:
lm_labels += [-1] * (len(s) + 1)
weights += [0.0] * (len(s) + 1)
else:
lm_labels += (s + [eos])
weights += [w] * (len(s) + 1)
# handle trailing -1's
i = len(lm_labels) - 1
while i >= 0:
if lm_labels[i] != -1:
break
i -= 1
input_ids = input_ids[:i+1]
lm_labels = lm_labels[:i+1]
weights = weights[:i+1]
token_type_ids = token_type_ids[:i+1]
# pad to multiples of 8
while len(input_ids) % 8 != 0:
input_ids.append(0)
token_type_ids.append(0)
lm_labels.append(-1)
weights.append(0.0)
position_ids = list(range(len(input_ids)))
assert (len(input_ids) == len(position_ids) == len(token_type_ids)
== len(lm_labels) == len(weights))
assert len(input_ids) % 8 == 0
if len(input_ids) == 0:
import pdb
pdb.set_trace()
feature = InputFeatures(id_, input_ids, position_ids, token_type_ids,
lm_labels, weights)
return feature
def main(args):
toker = GPT2Tokenizer.from_pretrained('gpt2')
attrs = []
if args.reverse:
attrs.append('reverse')
if args.two_turn:
attrs.append('2turn')
if attrs:
db_path = (f'{args.corpus[:-4]}.{args.max_seq_len}len.'
f'{".".join(attrs)}.db/db')
else:
db_path = f'{args.corpus[:-4]}.{args.max_seq_len}len.db/db'
if exists(dirname(db_path)):
raise ValueError('Found existing DB, please backup')
else:
os.makedirs(dirname(db_path))
with open(args.corpus, "r", encoding="utf-8") as reader, \
shelve.open(db_path, 'n') as db:
chunk = []
n_chunk = 0
n_example = 0
for line in tqdm(reader, total=_get_file_len(args.corpus)):
try:
if len(chunk) >= args.chunk_size:
# save and renew chunk
db[f'chunk_{n_chunk}'] = gzip.compress(
json.dumps(chunk[:args.chunk_size]).encode('utf-8'))
chunk = chunk[args.chunk_size:]
n_chunk += 1
weights, inputs = _get_inputs_from_text(line, toker)
if args.reverse:
weights = list(reversed(weights))
inputs = list(reversed(inputs))
if args.two_turn:
weights = weights[:2]
inputs = inputs[:2]
if len(weights) < 2:
continue
features = _make_features(n_example, weights, inputs,
toker, args.max_seq_len)
for feature in features:
chunk.append(vars(feature))
n_example += 1
except Exception as e:
print('!!! prepro exception !!!', e)
continue
# save last chunk
db[f'chunk_{n_chunk}'] = gzip.compress(
json.dumps(chunk).encode('utf-8'))
# save relevant information to reproduce
meta = {'n_example': n_example,
'chunk_size': args.chunk_size,
'max_seq_len': args.max_seq_len,
'reverse': args.reverse,
'two_turn': args.two_turn}
with open(join(dirname(db_path), 'meta.json'), 'w') as writer:
json.dump(meta, writer, indent=4)
torch.save(toker, join(dirname(db_path), 'tokenizer.pt'))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--corpus', required=True,
help='file name of training corpus (should be .tsv)')
parser.add_argument('--chunk_size', type=int, default=65536,
help='num of data examples in a storing chunk')
parser.add_argument('--max_seq_len', type=int, default=128,
help='discard data longer than this')
parser.add_argument('--reverse', action='store_true',
help='reverse the src tgt')
parser.add_argument('--two_turn', action='store_true',
help='take only the first 2 turns')
args = parser.parse_args()
main(args)