forked from CoinCheung/pytorch-loss
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsoft_dice_loss.py
237 lines (207 loc) · 6.96 KB
/
soft_dice_loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
#!/usr/bin/python
# -*- encoding: utf-8 -*-
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.cuda.amp as amp
import soft_dice_cpp # should import torch before import this
## Soft Dice Loss for binary segmentation
##
# v1: pytorch autograd
class SoftDiceLossV1(nn.Module):
'''
soft-dice loss, useful in binary segmentation
'''
def __init__(self,
p=1,
smooth=1,
reduction='mean'):
super(SoftDiceLossV1, self).__init__()
self.p = p
self.smooth = smooth
self.reduction = reduction
def forward(self, logits, labels):
'''
args: logits: tensor of shape (N, H, W)
args: label: tensor of shape(N, H, W)
'''
probs = torch.sigmoid(logits)
numer = (probs * labels).sum(dim=(1, 2))
denor = (probs.pow(self.p) + labels).sum(dim=(1, 2))
loss = 1. - (2 * numer + self.smooth) / (denor + self.smooth)
if self.reduction == 'mean':
loss = loss.mean()
elif self.reduction == 'sum':
loss = loss.sum()
return loss
##
# v2: self-derived grad formula
class SoftDiceLossV2(nn.Module):
'''
soft-dice loss, useful in binary segmentation
'''
def __init__(self,
p=1,
smooth=1,
reduction='mean'):
super(SoftDiceLossV2, self).__init__()
self.p = p
self.smooth = smooth
self.reduction = reduction
def forward(self, logits, labels):
'''
args: logits: tensor of shape (N, H, W)
args: label: tensor of shape(N, H, W)
'''
loss = SoftDiceLossV2Func.apply(logits, labels, self.p, self.smooth)
if self.reduction == 'mean':
loss = loss.mean()
elif self.reduction == 'sum':
loss = loss.sum()
return loss
class SoftDiceLossV2Func(torch.autograd.Function):
'''
compute backward directly for better numeric stability
'''
@staticmethod
@amp.custom_fwd
def forward(ctx, logits, labels, p, smooth):
logits = logits.float()
probs = torch.sigmoid(logits)
numer = 2 * (probs * labels).sum(dim=(1, 2)) + smooth
denor = (probs.pow(p) + labels).sum(dim=(1, 2)) + smooth
loss = 1. - numer / denor
ctx.vars = probs, labels, numer, denor, p, smooth
return loss
@staticmethod
@amp.custom_bwd
def backward(ctx, grad_output):
'''
compute gradient of soft-dice loss
'''
probs, labels, numer, denor, p, smooth = ctx.vars
M = numer.view(-1, 1, 1) - (probs * labels).mul_(2)
N = denor.view(-1, 1, 1) - probs.pow(p)
mppi_1 = probs.pow(p - 1).mul_(p).mul_(M)
grads = torch.where(labels == 1,
probs.pow(p).mul_(2 * (1. - p)) - mppi_1 + N.mul_(2),
-mppi_1)
grads = grads.div_((probs.pow(p) + N).pow(2)).mul_(probs).mul_(1. - probs)
grads = grads.mul_(grad_output.view(-1, 1, 1)).neg_()
return grads, None, None, None
##
# v3: implement with cuda to save memory
class SoftDiceLossV3(nn.Module):
'''
soft-dice loss, useful in binary segmentation
'''
def __init__(self,
p=1,
smooth=1.,
reduction='mean'):
super(SoftDiceLossV3, self).__init__()
self.p = p
self.smooth = smooth
self.reduction = reduction
def forward(self, logits, labels):
'''
args: logits: tensor of shape (N, H, W)
args: label: tensor of shape(N, H, W)
'''
loss = SoftDiceLossV3Func.apply(logits, labels, self.p, self.smooth)
if self.reduction == 'mean':
loss = loss.mean()
elif self.reduction == 'sum':
loss = loss.sum()
return loss
class SoftDiceLossV3Func(torch.autograd.Function):
'''
compute backward directly for better numeric stability
'''
@staticmethod
@amp.custom_fwd
def forward(ctx, logits, labels, p, smooth):
logits = logits.float()
loss = soft_dice_cpp.soft_dice_forward(logits, labels, p, smooth)
ctx.vars = logits, labels, p, smooth
return loss
@staticmethod
@amp.custom_bwd
def backward(ctx, grad_output):
'''
compute gradient of soft-dice loss
'''
logits, labels, p, smooth = ctx.vars
grads = soft_dice_cpp.soft_dice_backward(grad_output, logits, labels, p, smooth)
return grads, None, None, None
if __name__ == '__main__':
import torchvision
import torch
import numpy as np
import random
# torch.manual_seed(15)
# random.seed(15)
# np.random.seed(15)
# torch.backends.cudnn.deterministic = True
torch.cuda.set_device('cuda:1')
class Model(nn.Module):
def __init__(self):
super(Model, self).__init__()
net = torchvision.models.resnet18(pretrained=False)
self.conv1 = net.conv1
self.bn1 = net.bn1
self.maxpool = net.maxpool
self.relu = net.relu
self.layer1 = net.layer1
self.layer2 = net.layer2
self.layer3 = net.layer3
self.layer4 = net.layer4
self.out = nn.Conv2d(512, 1, 3, 1, 1)
def forward(self, x):
feat = self.conv1(x)
feat = self.bn1(feat)
feat = self.relu(feat)
feat = self.maxpool(feat)
feat = self.layer1(feat)
feat = self.layer2(feat)
feat = self.layer3(feat)
feat = self.layer4(feat)
feat = self.out(feat)
out = F.interpolate(feat, x.size()[2:], mode='bilinear', align_corners=True)
return out
net1 = Model()
net2 = Model()
net2.load_state_dict(net1.state_dict())
criteria1 = SoftDiceLossV1()
criteria2 = SoftDiceLossV3()
net1.cuda()
net2.cuda()
net1.train()
net2.train()
criteria1.cuda()
criteria2.cuda()
optim1 = torch.optim.SGD(net1.parameters(), lr=1e-2)
optim2 = torch.optim.SGD(net2.parameters(), lr=1e-2)
bs = 12
size = 32, 32
# size = 229, 229
# for it in range(300000):
for it in range(500):
inten = torch.randn(bs, 3, *size).cuda()
lbs = torch.randint(0, 2, (bs, *size)).cuda()
logits = net1(inten).squeeze(1)
loss1 = criteria1(logits, lbs)
optim1.zero_grad()
loss1.backward()
optim1.step()
logits = net2(inten).squeeze(1)
loss2 = criteria2(logits, lbs)
optim2.zero_grad()
loss2.backward()
optim2.step()
with torch.no_grad():
if (it+1) % 50 == 0:
print('iter: {}, ================='.format(it+1))
print('out.weight: ', torch.mean(torch.abs(net1.out.weight - net2.out.weight)).item())
print('conv1.weight: ', torch.mean(torch.abs(net1.conv1.weight - net2.conv1.weight)).item())
print('loss: ', loss1.item() - loss2.item())