forked from CoinCheung/pytorch-loss
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdice_loss.py
176 lines (155 loc) · 5.64 KB
/
dice_loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
#!/usr/bin/python
# -*- encoding: utf-8 -*-
import torch
import torch.nn as nn
import torch.nn.functional as F
class GeneralizedSoftDiceLoss(nn.Module):
def __init__(self,
p=1,
smooth=1,
reduction='mean',
weight=None,
ignore_lb=255):
super(GeneralizedSoftDiceLoss, self).__init__()
self.p = p
self.smooth = smooth
self.reduction = reduction
self.weight = None if weight is None else torch.tensor(weight)
self.ignore_lb = ignore_lb
def forward(self, logits, label):
'''
args: logits: tensor of shape (N, C, H, W)
args: label: tensor of shape(N, H, W)
'''
# overcome ignored label
logits = logits.float()
ignore = label.data.cpu() == self.ignore_lb
label = label.clone()
label[ignore] = 0
lb_one_hot = torch.zeros_like(logits).scatter_(1, label.unsqueeze(1), 1)
ignore = ignore.nonzero()
_, M = ignore.size()
a, *b = ignore.chunk(M, dim=1)
lb_one_hot[[a, torch.arange(lb_one_hot.size(1)).long(), *b]] = 0
lb_one_hot = lb_one_hot.detach()
# compute loss
probs = torch.sigmoid(logits)
numer = torch.sum((probs*lb_one_hot), dim=(2, 3))
denom = torch.sum(probs.pow(self.p)+lb_one_hot.pow(self.p), dim=(2, 3))
if not self.weight is None:
numer = numer * self.weight.view(1, -1)
denom = denom * self.weight.view(1, -1)
numer = torch.sum(numer, dim=1)
denom = torch.sum(denom, dim=1)
loss = 1 - (2*numer+self.smooth)/(denom+self.smooth)
if self.reduction == 'mean':
loss = loss.mean()
return loss
class BatchSoftDiceLoss(nn.Module):
def __init__(self,
p=1,
smooth=1,
weight=None,
ignore_lb=255):
super(BatchSoftDiceLoss, self).__init__()
self.p = p
self.smooth = smooth
self.weight = None if weight is None else torch.tensor(weight)
self.ignore_lb = ignore_lb
def forward(self, logits, label):
'''
args: logits: tensor of shape (N, C, H, W)
args: label: tensor of shape(N, H, W)
'''
# overcome ignored label
logits = logits.float()
ignore = label.data.cpu() == self.ignore_lb
label = label.clone()
label[ignore] = 0
lb_one_hot = torch.zeros_like(logits).scatter_(1, label.unsqueeze(1), 1)
ignore = ignore.nonzero()
_, M = ignore.size()
a, *b = ignore.chunk(M, dim=1)
lb_one_hot[[a, torch.arange(lb_one_hot.size(1)).long(), *b]] = 0
lb_one_hot = lb_one_hot.detach()
# compute loss
probs = torch.sigmoid(logits)
numer = torch.sum((probs*lb_one_hot), dim=(2, 3))
denom = torch.sum(probs.pow(self.p)+lb_one_hot.pow(self.p), dim=(2, 3))
if not self.weight is None:
numer = numer * self.weight.view(1, -1)
denom = denom * self.weight.view(1, -1)
numer = torch.sum(numer)
denom = torch.sum(denom)
loss = 1 - (2*numer+self.smooth)/(denom+self.smooth)
return loss
if __name__ == '__main__':
import torchvision
import torch
import numpy as np
import random
torch.manual_seed(15)
random.seed(15)
np.random.seed(15)
torch.backends.cudnn.deterministic = True
class Model(nn.Module):
def __init__(self):
super(Model, self).__init__()
net = torchvision.models.resnet18(pretrained=False)
self.conv1 = net.conv1
self.bn1 = net.bn1
self.maxpool = net.maxpool
self.relu = net.relu
self.layer1 = net.layer1
self.layer2 = net.layer2
self.layer3 = net.layer3
self.layer4 = net.layer4
self.out = nn.Conv2d(512, 1, 3, 1, 1)
def forward(self, x):
feat = self.conv1(x)
feat = self.bn1(feat)
feat = self.relu(feat)
feat = self.maxpool(feat)
feat = self.layer1(feat)
feat = self.layer2(feat)
feat = self.layer3(feat)
feat = self.layer4(feat)
feat = self.out(feat)
out = F.interpolate(feat, x.size()[2:], mode='bilinear', align_corners=True)
return out
net1 = Model()
net2 = Model()
net2.load_state_dict(net1.state_dict())
criteria1 = SoftDiceLossV1()
criteria2 = SoftDiceLossV3()
net1.cuda()
net2.cuda()
net1.train()
net2.train()
criteria1.cuda()
criteria2.cuda()
optim1 = torch.optim.SGD(net1.parameters(), lr=1e-2)
optim2 = torch.optim.SGD(net2.parameters(), lr=1e-2)
bs = 2
for it in range(300000):
inten = torch.randn(bs, 3, 224, 244).cuda()
lbs = torch.randint(0, 2, (bs, 224, 244)).cuda()
logits = net1(inten).squeeze(1)
loss1 = criteria1(logits, lbs)
optim1.zero_grad()
loss1.backward()
optim1.step()
logits = net2(inten).squeeze(1)
loss2 = criteria2(logits, lbs)
optim2.zero_grad()
loss2.backward()
optim2.step()
# print('====')
# print(loss1.item())
# print(loss2.item())
with torch.no_grad():
if (it+1) % 50 == 0:
print('iter: {}, ================='.format(it+1))
print('out.weight: ', torch.mean(torch.abs(net1.out.weight - net2.out.weight)).item())
print('conv1.weight: ', torch.mean(torch.abs(net1.conv1.weight - net2.conv1.weight)).item())
print('loss: ', loss1.item() - loss2.item())