-
Notifications
You must be signed in to change notification settings - Fork 1
/
resnet101.py
127 lines (103 loc) · 3.52 KB
/
resnet101.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
# ResNet-101 implementation based on publication https://arxiv.org/abs/1512.03385
from torch import nn
import torch
from resnet_blocks import ResNetBottleneckBlock
class ResNet101(nn.Module):
def __init__(self, class_num):
super(ResNet101, self).__init__()
self.class_num = class_num
self.conv2_blocks = 3
self.conv3_blocks = 4
self.conv4_blocks = 23
self.conv5_blocks = 3
self.conv1 = nn.Sequential()
self.conv1.add_module(
'conv1_1',
nn.Conv2d(
in_channels = 3,
out_channels = 256,
kernel_size = 7,
stride = 2,
padding = 3
)
)
self.conv1.add_module(
'conv1_bn',
nn.BatchNorm2d(256)
)
self.conv1.add_module(
'conv1_relu',
nn.ReLU()
)
current_channels = 256
#activation map should of size 256 x 112x112
self.conv2 = nn.Sequential()
self.conv2.add_module(
'conv2_max_pool',
nn.MaxPool2d(
kernel_size = 3,
stride = 2,
padding = 1
)
)
#activation map of size 256 x 56x56
for block_idx in range(self.conv2_blocks):
self.conv2.add_module(
f'conv2_{block_idx+1}',
ResNetBottleneckBlock(
current_channels
)
)
#activation map of size 512 x 28x28
self.conv3 = nn.Sequential()
for block_idx in range(self.conv3_blocks):
is_downsampling_block = block_idx == 0
self.conv3.add_module(
f'conv3_{block_idx+1}',
ResNetBottleneckBlock(
current_channels,
is_downsampling_block = is_downsampling_block
)
)
if is_downsampling_block:
current_channels *= 2
#activation map should be of size 1024 x 14x14
self.conv4 = nn.Sequential()
for block_idx in range(self.conv4_blocks):
is_downsampling_block = block_idx == 0
self.conv4.add_module(
f'conv4_{block_idx+1}',
ResNetBottleneckBlock(
current_channels,
is_downsampling_block = is_downsampling_block)
)
if is_downsampling_block:
current_channels *= 2
#activation map should be of size 2048 x 7x7
self.conv5 = nn.Sequential()
for block_idx in range(self.conv5_blocks):
is_downsampling_block = block_idx == 0
self.conv5.add_module(
f'conv5_{block_idx+1}',
ResNetBottleneckBlock(
current_channels,
is_downsampling_block = is_downsampling_block)
)
if is_downsampling_block:
current_channels *= 2
#activation map should be of size 2048 x 7x7
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.fully_connected = nn.Linear(current_channels, self.class_num)
self.softmax = nn.Softmax(dim=1)
def forward(self, x):
x = self.conv1(x)
x = self.conv2(x)
x = self.conv3(x)
x = self.conv4(x)
x = self.conv5(x)
x = self.avg_pool(x)
x = torch.squeeze(x, dim = 3)
x = torch.squeeze(x, dim = 2)
x = self.fully_connected(x)
x = self.softmax(x)
return x