-
Notifications
You must be signed in to change notification settings - Fork 0
/
spatial-scale.py
129 lines (108 loc) · 4.94 KB
/
spatial-scale.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import numpy as np
from scipy.stats import rv_discrete
from matplotlib import pyplot as plt
import cvxpy as cp
import utils
import pickle
# from tempfile import TemporaryFile
def run_max_weight( time_steps, N, pmf_cust, pmf_serv, W, alpha_values, gurobi_flag = 1 ):
arrival_ids = np.arange(0,N,1)
cust_process = rv_discrete(name='cust_arr', values=(arrival_ids, pmf_cust))
serv_process = rv_discrete(name='serv_arr', values=(arrival_ids, pmf_serv))
Q_paths = []
C_paths = []
for alpha in alpha_values:
if gurobi_flag:
res = utils.max_weight_gurobi( time_steps, N, cust_process, serv_process, W, alpha )
else:
res = utils.max_weight( time_steps, N, cust_process, serv_process, W, alpha )
Q_paths.append(res["QP"])
C_paths.append(res["CP"])
return({"Q_paths": Q_paths,"C_paths":C_paths})
def run_batching( time_steps, N, pmf_cust, pmf_serv, W, Tbatches, gurobi_flag = 1 ):
arrival_ids = np.arange(0,N,1)
cust_process = rv_discrete(name='cust_arr', values=(arrival_ids, pmf_cust))
serv_process = rv_discrete(name='serv_arr', values=(arrival_ids, pmf_serv))
Q_paths = []
C_paths = []
for T in Tbatches:
if gurobi_flag:
res = utils.batching_gurobi( time_steps, N, cust_process, serv_process, W, T )
else:
res = utils.batching( time_steps, N, cust_process, serv_process, W, T )
Q_paths.append(res["QP"])
C_paths.append(res["CP"])
return({"Q_paths": Q_paths,"C_paths":C_paths})
def plot_from_sim_paths(file_name):
with open(file_name,'rb') as f:
M_res,B_res, N, W, pmf_cust, pmf_serv = pickle.load(f)
print(M_res)
Q_paths_M = M_res["Q_paths"]
C_paths_M = M_res["C_paths"]
Q_paths_B = B_res["Q_paths"]
C_paths_B = B_res["C_paths"]
(average_cost_M, average_queue_M) = utils.average_paths(C_paths_M,Q_paths_M)
(average_cost_B, average_queue_B) = utils.average_paths(C_paths_B,Q_paths_B)
[Ex,fluid_sol] = run_extremes(N,W,pmf_cust,pmf_serv)
utils.qc_plot(Ex,fluid_sol,average_queue_B,average_cost_B,average_queue_M,average_cost_M)
def generate_weights(N_grid, is_spatial = 0):
Weights = np.zeros(shape=(N_grid,N_grid))
if is_spatial:
X = np.arange(0.5,N_grid,1)
Y = np.arange(0.5,N_grid,1)
cell_locs = []
for i in range(N_grid):
for j in range(N_grid):
cell_locs.append([X[i],Y[j]])
N_cells = N_grid*N_grid
Weights = np.zeros(shape=(N_cells,N_cells))
for i in range(N_cells):
for j in range(N_cells):
Weights[i,j] = np.sqrt((cell_locs[i][0] - cell_locs[j][0])**2 + (cell_locs[i][1] - cell_locs[j][1])**2)
print("Spatial",Weights)
else:
rand_weights = np.random.rand(N_grid, N_grid)
N_cells = N_grid*N_grid
for counter in range(N_cells):
for i in range(N_grid):
for j in range(N_grid):
for k in range(N_grid):
rand_weights[i,j] = min(rand_weights[i,j],rand_weights[i,k] + rand_weights[k,j] )
print("Random",rand_weights)
Weights = rand_weights
return(Weights)
# Problem setup
factors = [10,100]
time_steps_M = 1#00000
time_steps_B = 1#00000
Tbatches = np.asarray( [1,2, 3, 4, 5, 8, 10, 12, 15, 18, 20, 30, 40, 50, 60, 100 ] )
# alpha_values = np.asarray( [0, 0.2, 0.25, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.8,0.9,0.95] )
# alpha_values = np.asarray( [0, 0.2, 0.25, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.675, 0.7, 0.725, 0.75, 0.8, 0.825, 0.85, 0.875, 0.9, 0.925, 0.95] )
alpha_values = np.asarray( [0, 0.2, 0.25, 0.35, 0.4, 0.45,0.46, 0.47, 0.48, 0.49, 0.5, 0.55, 0.6, 0.65, 0.675, 0.7, 0.725, 0.75, 0.8, 0.825, 0.85, 0.875, 0.9, 0.925, 0.95] )
N = 16
pmf_cust = np.random.rand(N)
pmf_cust = pmf_cust/(np.sum(pmf_cust))
pmf_serv = np.random.rand(N)
pmf_serv = pmf_serv/(np.sum(pmf_serv))
# pmf_cust = [0.19,0.31,0.42,0.08]
# pmf_serv = [0.09,0.23,0.41,0.27]
print(pmf_cust,pmf_serv)
for factor in factors:
N = 4
is_spatial = 1
W = generate_weights(N,is_spatial)*factor
print("scaled weights",W)
if is_spatial == 1:
N = N*N
M_res = run_max_weight( time_steps_M, N, pmf_cust, pmf_serv, W, alpha_values,0 )
Q_paths_M = M_res["Q_paths"]
C_paths_M = M_res["C_paths"]
B_res = run_batching( time_steps_B, N, pmf_cust, pmf_serv, W, Tbatches,0 )
Q_paths_B = B_res["Q_paths"]
C_paths_B = B_res["C_paths"]
(average_cost_M, average_queue_M) = utils.average_paths(C_paths_M,Q_paths_M)
(average_cost_B, average_queue_B) = utils.average_paths(C_paths_B,Q_paths_B)
with open('/storage/home/hcoda1/7/vsivaraman3/p-smaguluri3-0/spatial-matching-sim-vishal/sim_paths_spatial_scale_' + str(N) + '.pkl', 'wb') as f:
# with open('./sim_paths_spatial_scale_' + str(factor) + '.pkl', 'wb') as f:
pickle.dump([M_res,B_res, N, W, pmf_cust, pmf_serv], f)
print("Run completed successfully")