diff --git a/src/metatrain/experimental/phace/modules/cg.py b/src/metatrain/experimental/phace/modules/cg.py index 8d5d5c78..edc4b98e 100644 --- a/src/metatrain/experimental/phace/modules/cg.py +++ b/src/metatrain/experimental/phace/modules/cg.py @@ -88,7 +88,7 @@ def cg_combine_l1l2L(tensor12, cg_tensor): ) return out_tensor.swapaxes( 1, 2 - ) # / (cg_tensor.shape[0]*cg_tensor.shape[1]*cg_tensor.shape[2]) + ) def get_cg_coefficients(l_max): diff --git a/src/metatrain/experimental/phace/tests/test_regression.py b/src/metatrain/experimental/phace/tests/test_regression.py index 6ccea441..1c1442a6 100644 --- a/src/metatrain/experimental/phace/tests/test_regression.py +++ b/src/metatrain/experimental/phace/tests/test_regression.py @@ -30,6 +30,7 @@ def test_regression_init(): length_unit="Angstrom", atomic_types=[1, 6, 7, 8], targets=targets ) model = PhACE(MODEL_HYPERS, dataset_info) + model = torch.jit.script(model) # Predict on the first five systems systems = read_systems(DATASET_PATH)[:5] @@ -106,6 +107,7 @@ def test_regression_train(): systems = [system.to(torch.float32) for system in systems] for system in systems: get_system_with_neighbor_lists(system, model.requested_neighbor_lists()) + model = torch.jit.script(model) output = model( systems[:5], {"mtt::U0": ModelOutput(quantity="energy", unit="", per_atom=False)},