-
Notifications
You must be signed in to change notification settings - Fork 1
/
05_evaluation-tables.py
504 lines (414 loc) · 16.6 KB
/
05_evaluation-tables.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
"""
Input files:
evaluation-tables.json
papers.json
datasets.json
methods.json
Output file:
evaluation-tables.nt
"""
from rdflib import URIRef, BNode, Literal
from rdflib import Graph, Namespace, URIRef
from rdflib.namespace import DCTERMS, RDF, RDFS, XSD, OWL, FOAF
from paperswithcode import PapersWithCodeClient
import json
import re
import html2text
import markdown
from collections import deque
#Path to datasets.json, methods.json and papers.json input files
file_path_dataset = '.../datasets.json'
file_path_methods = '.../methods.json'
file_path_papers = '.../papers.json'
file_path_evaluation_tables = '.../evaluation-tables.json'
#Path to evaluation-tables.nt output file
ntriple_evaluation_tables_output_file_path = '.../evaluation-tables.nt'
replacements = [
{
"search": re.compile(r'"'),
"replace": '', # "
"comment": "Unescaped quotation marks"
}, {
"search": re.compile(r'\\'),
"replace": '', # \
"comment": "Unescaped backslash"
}, {
"search": re.compile(r'\n'),
"replace": '',
"comment": "Newline string"
}, {
"search": re.compile(r'\b'),
"replace": '',
"comment": "Newline string"
}, {
"search": re.compile(r'\t'),
"replace": '',
"comment": "Newline string"
}, {
"search": re.compile(r'\r'),
"replace": '',
"comment": "Newline string"
}, {
"search": re.compile(r'\f'),
"replace": '',
"comment": "Newline string"
}
]
replacements_url = [
{
"search": re.compile(r'"'),
"replace": '%22',
"comment": "Unescaped quotation mark in URI"
}, {
"search": re.compile(r'\\'),
"replace": '%5c',
"comment": "Unescaped backslash in URI"
}, {
"search": re.compile(r'\n'),
"replace": '',
"comment": "Newline string"
}, {
"search": re.compile(r'\r'),
"replace": '',
"comment": "Newline string"
}, {
"search": re.compile(r'\t'),
"replace": '',
"comment": "Newline string"
}, {
"search": re.compile(r'\^'),
"replace": '',
"comment": "caret"
}, {
"search": re.compile(r'\$'),
"replace": '',
"comment": "Dollar sign"
}, {
"search": re.compile(r'\{'),
"replace": '',
"comment": "Opening curly brace"
}, {
"search": re.compile(r'\}'),
"replace": '',
"comment": "Closing curly brace"
}, {
"search": re.compile(r'\('),
"replace": '',
"comment": "Opening parenthesis"
}, {
"search": re.compile(r'\)'),
"replace": '',
"comment": "Closing parenthesis"
}, {
"search": re.compile(r':'),
"replace": '',
"comment": "Colon"
}, {
"search": re.compile(r','),
"replace": '',
"comment": "Comma"
}, {
"search": re.compile(r'>'),
"replace": '',
"comment": "Greater than"
}, {
"search": re.compile(r'<'),
"replace": '',
"comment": "Less than"
}, {
"search": re.compile(r'---'),
"replace": '',
"comment": "Triple dash"
}, {
"search": re.compile(r'--'),
"replace": '',
"comment": "Double dash"
}, {
"search": re.compile(r'\+'),
"replace": '',
"comment": "Plus sign"
}, {
"search": re.compile(r'\['),
"replace": '',
"comment": "Opening square bracket"
}, {
"search": re.compile(r'\]'),
"replace": '',
"comment": "Closing square bracket"
}, {
"search": re.compile(r'\|'),
"replace": '',
"comment": "Pipe"
}, {
"search": re.compile(r'%'),
"replace": '',
"comment": "Percent sign"
}, {
"search": re.compile(r'\xa0'),
"replace": '',
"comment": "Non-breaking space"
}, {
"search": re.compile(r'!'),
"replace": '',
"comment": "Exclamation mark"
}, {
"search": re.compile(r'\s'),
"replace": '',
"comment": "Whitespace"
}, {
"search": re.compile(r'%22'),
"replace": '',
"comment": "Quotation mark"
}, {
"search": re.compile(r'#'),
"replace": '',
"comment": "Hash"
}, {
"search": re.compile(r'@'),
"replace": '',
"comment": "At sign"
}, {
"search": re.compile(r'\*'),
"replace": '',
"comment": "Asterisk"
}
]
def clean(nameStr):
cleaned_str = nameStr
for r in replacements:
if re.search(r["search"], nameStr):
cleaned_str = re.sub(r["search"], r["replace"], cleaned_str)
return cleaned_str
def clean_url(nameStr):
cleaned_str = nameStr
for r in replacements_url:
if re.search(r["search"], nameStr):
cleaned_str = re.sub(r["search"], r["replace"], cleaned_str)
return cleaned_str
def convert_markdown_to_plain_text(md_string):
html = markdown.markdown(md_string)
text_maker = html2text.HTML2Text()
text_maker.ignore_links = True
text_maker.ignore_images = True
text_maker.ignore_emphasis = True
plain_text = text_maker.handle(html)
return plain_text
#Info for namespaces used in LinkedPapersWithCode
lpwc_namespace = "https://linkedpaperswithcode.com"
lpwc_namespace_class = "https://linkedpaperswithcode.com/class"
lpwc_paper_class = URIRef(lpwc_namespace_class + "/paper")
lpwc_task_class = URIRef(lpwc_namespace_class + "/task")
lpwc_dataset_class = URIRef(lpwc_namespace_class + "/dataset")
lpwc_method_class = URIRef(lpwc_namespace_class + "/method")
lpwc_model_class = URIRef(lpwc_namespace_class + "/model")
lpwc_evaluation_class = URIRef(lpwc_namespace_class + "/evaluation")
lpwc_evaluation_result_class = URIRef(lpwc_namespace_class + "/evaluationresult")
lpwc_area_class = URIRef(lpwc_namespace_class + "/area")
#LinkedPapersWithCode classes used in this file
lpwc_paper = URIRef(lpwc_namespace + "/paper/")
lpwc_task = URIRef(lpwc_namespace + "/task/")
lpwc_dataset = URIRef(lpwc_namespace + "/dataset/")
lpwc_method = URIRef(lpwc_namespace + "/method/")
lpwc_model = URIRef(lpwc_namespace + "/model/")
lpwc_evaluation = URIRef(lpwc_namespace + "/evaluation/")
lpwc_evaluation_result = URIRef(lpwc_namespace + "/evaluationresult/")
lpwc_area = URIRef(lpwc_namespace + "/area/")
#LinkedPapersWithCode predicates used in this file
has_subtask = URIRef("https://linkedpaperswithcode.com/property/hasSubtask")
has_area = URIRef("http://dbpedia.org/property/area")
has_task = URIRef("https://linkedpaperswithcode.com/property/hasTask")
has_evaluation = URIRef("https://linkedpaperswithcode.com/property/hasEvaluation")
has_dataset = URIRef("https://linkedpaperswithcode.com/property/hasDataset")
has_model = URIRef("https://linkedpaperswithcode.com/property/hasModel")
has_evaluation_result = URIRef("https://linkedpaperswithcode.com/property/hasEvaluationResult")
has_metric_name = URIRef("https://linkedpaperswithcode.com/property/metricName")
has_metric_value = URIRef("https://linkedpaperswithcode.com/property/metricValue")
uses_extra_training_data = URIRef("https://linkedpaperswithcode.com/property/usesExtraTrainingData")
used_dataset = URIRef("https://linkedpaperswithcode.com/property/usesDataset")
#Task Mapping
client = PapersWithCodeClient()
def get_all_tasks(client):
page = 1 # Beginnen Sie mit Seite 1
all_tasks = []
while True:
tasks = client.task_list(page=page)
all_tasks.extend(tasks.results)
if tasks.next_page is None: # Wenn es keine nächste Seite gibt, beenden Sie die Schleife
break
page = tasks.next_page # Ansonsten setzen Sie die nächste Seite auf die nächste zu durchsuchende Seite
return all_tasks
task_list = get_all_tasks(client)
task_list.pop(0)
task_mapping = {}
for task in task_list:
task_mapping[task.name] = task.id
print("Task Mapping Taks-Title : Task-ID created")
#Paper Mapping
paper_mapping = {}
with open(file_path_papers, 'r') as file:
papers = json.load(file)
for paper in papers:
#paper-id
paper_id = paper["paper_url"].replace("https://paperswithcode.com/paper/", "")
paper_title = paper["title"]
paper_mapping[paper_title] = paper_id
print("Paper Mapping Paper-Title : Paper-ID created")
#Dataset Mapping
dataset_mapping = {}
with open(file_path_dataset, 'r') as file:
datasets = json.load(file)
for dataset in datasets:
#dataset-id
dataset_id = dataset["url"].replace("https://paperswithcode.com/dataset/", "")
dataset_name = dataset["name"]
dataset_mapping[dataset_name] = dataset_id
print("Dataset Mapping Dataset-Name : Dataset-ID created")
#Area mapping
area_mapping = {}
with open(file_path_methods, 'r') as file:
methods = json.load(file)
for method in methods:
if method["collections"] != None:
for collection in method["collections"]:
area_id = collection["area_id"]
area_mapping[collection["area"]] = area_id
print("Area Mapping Area-Name : Area-ID created")
#recursive method for tasks (calls handle_dataset and handle_task)
def handle_task(task, g, parent=None):
if task['task'] in task_mapping:
task_id = clean_url(task_mapping[task['task']])
task_uri = URIRef(lpwc_task + task_id)
description = convert_markdown_to_plain_text(task['description'])
description = clean(description)
g.add((task_uri, DCTERMS.description, Literal(description, datatype=XSD.string)))
else:
task_id = clean_url(task['task'].replace(" ", "-").lower())
task_uri = URIRef(lpwc_task + task_id)
description = convert_markdown_to_plain_text(task['description'])
description = clean(description)
g.add((task_uri, DCTERMS.description, Literal(description, datatype=XSD.string)))
if parent is not None:
g.add((parent, has_subtask, task_uri))
for category in task['categories']:
if category in area_mapping:
area_id = area_mapping[category]
area_id = clean_url(area_id)
area_uri = URIRef(lpwc_area + area_id)
g.add((task_uri, has_area, area_uri))
else:
area_id = category.replace(" ", "-").lower()
area_id = clean_url(area_id)
area_uri = URIRef(lpwc_area + area_id)
area_name = clean(category)
g.add((area_uri, RDF.type, lpwc_area_class))
g.add((area_uri, FOAF.name, Literal(area_name, datatype=XSD.string)))
g.add((task_uri, has_area, area_uri))
for dataset in task.get('datasets', []):
handle_dataset(dataset, g, task_uri)
for subtask in task.get('subtasks', []):
handle_task(subtask, g, task_uri)
#method for dataset objects
def handle_dataset(dataset, g, task_uri):
if dataset['dataset'] in dataset_mapping:
dataset_id = dataset_mapping[dataset['dataset']]
dataset_id = clean_url(dataset_id)
dataset_uri = URIRef(lpwc_dataset + dataset_id)
else:
dataset_id = dataset['dataset'].replace(" ", "-").lower()
dataset_id = clean_url(dataset_id)
dataset_uri = URIRef(lpwc_dataset + dataset_id)
if dataset["description"] != "":
description = convert_markdown_to_plain_text(dataset["description"])
description = clean(description)
g.add((dataset_uri, DCTERMS.description, Literal(description, datatype=XSD.string)))
row_counter = 0
current_paper = ""
current_model = ""
task_id = task_uri.replace("https://linkedpaperswithcode.com/task/", "")
dataset_id = dataset_uri.replace("https://linkedpaperswithcode.com/dataset/", "")
if dataset.get('sota') is not None:
for row in dataset['sota']['rows']:
paper_title = row['paper_title']
if paper_title in paper_mapping:
paper_id = clean_url(paper_mapping[paper_title])
paper_uri = URIRef(lpwc_paper + paper_id)
else:
paper_id = paper_title.replace(" ", "-").lower()
paper_id = clean_url(paper_id)
paper_uri = URIRef(lpwc_paper + paper_id)
if current_paper != row['paper_title']:
current_paper = row['paper_title']
model_id = clean_url(row['model_name'].replace(" ", "-").lower())
evaluation_uri = URIRef(lpwc_evaluation + paper_id + "/" + task_id + "/" + dataset_id + "/" + model_id)
g.add((evaluation_uri, RDF.type, lpwc_evaluation_class))
g.add((paper_uri, has_evaluation, evaluation_uri))
model_id = clean_url(row['model_name'].replace(" ", "-").lower())
model_uri = URIRef(lpwc_model + model_id)
g.add((paper_uri, has_model, model_uri))
g.add((paper_uri, used_dataset, dataset_uri))
elif current_model != row['model_name']:
current_model = row['model_name']
model_id = clean_url(row['model_name'].replace(" ", "-").lower())
evaluation_uri = URIRef(lpwc_evaluation + paper_id + "/" + task_id + "/" + dataset_id + "/" + model_id)
g.add((evaluation_uri, RDF.type, lpwc_evaluation_class))
g.add((paper_uri, has_evaluation, evaluation_uri))
model_uri = URIRef(lpwc_model + model_id)
g.add((paper_uri, has_model, model_uri))
else:
model_id = clean_url(row['model_name'].replace(" ", "-").lower())
evaluation_uri = URIRef(lpwc_evaluation + paper_id + "/" + task_id + "/" + dataset_id + "/" + model_id)
#has_task
g.add((evaluation_uri, has_task, task_uri))
#has_dataset
g.add((evaluation_uri, has_dataset, dataset_uri))
#has_model
model_id = clean_url(row['model_name'].replace(" ", "-").lower())
model_uri = URIRef(lpwc_model + model_id)
model_name = clean(row['model_name'])
g.add((model_uri, RDF.type, lpwc_model_class))
g.add((model_uri, FOAF.name, Literal(model_name, datatype=XSD.string)))
g.add((evaluation_uri, has_model, model_uri))
#has_metric (name and value)
if row['metrics'] is not None:
for metric_name, metric_value in row['metrics'].items():
#initialize evaluationresult entities
evaluation_id = evaluation_uri.replace("https://linkedpaperswithcode.com/evaluation/", "")
metric_name_id = metric_name.replace(" ", "-").lower()
metric_name_id = clean_url(metric_name_id)
evaluation_result_uri = URIRef(lpwc_evaluation_result + evaluation_id + "/" + metric_name_id)
g.add((evaluation_result_uri, RDF.type, lpwc_evaluation_result_class))
g.add((evaluation_uri, has_evaluation_result, evaluation_result_uri))
g.add((evaluation_result_uri, has_metric_name, Literal(metric_name, datatype=XSD.string)))
g.add((evaluation_result_uri, has_metric_value, Literal(metric_value, datatype=XSD.string)))
#uses_additional_data
if row['uses_additional_data'] == True:
g.add((evaluation_result_uri, uses_extra_training_data, Literal(True, datatype=XSD.boolean)))
elif row['uses_additional_data'] == False:
g.add((evaluation_result_uri, uses_extra_training_data, Literal(False, datatype=XSD.boolean)))
#breadth-first search of the objects
def breadth_first_search(obj, g):
queue = deque([(None, obj, 0)])
while queue:
key, current_data, depth = queue.popleft()
if isinstance(current_data, dict) and 'task' in current_data:
handle_task(current_data, g)
elif isinstance(current_data, list):
for item in current_data:
queue.append((key, item, depth+1))
elif isinstance(current_data, dict):
for k, v in current_data.items():
queue.append((k, v, depth+1))
#method to create the final graph and output it to a file
def create_graph(data):
g = Graph()
breadth_first_search(data, g)
serialized_graph = g.serialize(format='nt')
#specify the path to the output file
path = ntriple_evaluation_tables_output_file_path
# Write to file
with open(path, 'wb') as f:
f.write(serialized_graph.encode('utf-8'))
with open(file_path_evaluation_tables, 'r') as f:
data = json.load(f)
create_graph(data)
print("Done")