-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path02_transe_kge_training.py
146 lines (116 loc) · 4.46 KB
/
02_transe_kge_training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
#script to calculate TransE embeddings for the entities and relations of the linkedpaperswithcode dataset
import torch
from torch_geometric.data import Dataset, download_url, Data
from torch_geometric.transforms import RandomLinkSplit
from torch_geometric import seed_everything
from torch_geometric.nn import TransE
import torch
import torch.optim as optim
import time
import pandas as pd
import numpy as np
#path to the output evaluation file
with open(".../transe-kge-summary.txt", "w",) as z:
start_time = time.ctime()
z.write(f'Calculate embeddings with TransE started at: {start_time}\n')
z.flush()
print('Calculate embeddings with TransE started at: ', start_time)
first_numbers = []
second_numbers = []
third_numbers = []
#input dataset
with open('.../triples.txt', 'r') as file:
for line in file:
numbers = line.split()
first_numbers.append(int(numbers[0]))
second_numbers.append(int(numbers[1]))
third_numbers.append(int(numbers[2]))
# Konvertiere die Listen in PyTorch-Tensoren
first_tensor = torch.tensor(first_numbers)
second_tensor = torch.tensor(second_numbers)
third_tensor = torch.tensor(third_numbers)
# Kombiniere die beiden Tensoren in einem 2D-Tensor
combined_tensor = torch.stack((first_tensor, third_tensor))
data = Data(edge_index=combined_tensor,
edge_type=second_tensor,
num_nodes=combined_tensor.max().item() + 1,
)
seed_everything(1)
transform = RandomLinkSplit(
num_val=0.1,
num_test=0.1,
)
train_data, val_data, test_data = transform(data)
device = torch.device('cuda:0')
z.write(f'Using device: {device}\n')
z.flush()
print('Using device:', device)
model = TransE(
num_nodes=train_data.num_nodes,
num_relations=train_data.num_edge_types,
hidden_channels=256,
).to(device)
loader = model.loader(
head_index=train_data.edge_index[0].to(device),
rel_type=train_data.edge_type.to(device),
tail_index=train_data.edge_index[1].to(device),
batch_size=2000,
shuffle=True,
)
optimizer = optim.Adam(model.parameters(), lr=0.001)
def train():
model.train()
total_loss = total_examples = 0
for head_index, rel_type, tail_index in loader:
optimizer.zero_grad()
loss = model.loss(head_index, rel_type, tail_index)
loss.backward()
optimizer.step()
total_loss += float(loss) * head_index.numel()
total_examples += head_index.numel()
return total_loss / total_examples
@torch.no_grad()
def test(val_data, k):
model.eval()
head_index = val_data.edge_index[0].to(device)
rel_type = val_data.edge_type.to(device)
tail_index = val_data.edge_index[1].to(device)
return model.test(
head_index=head_index,
rel_type=rel_type,
tail_index=tail_index,
batch_size=20000,
k=k,
)
for epoch in range(1, 901):
loss = train()
z.write(f'Epoch: {epoch:03d}, Loss: {loss:.4f}\n')
z.flush()
'''
Uncomment if you want to evaluate the training every 300 epochs based on the validation set (e.g., for early stopping)
if epoch % 300 == 0:
rank, hits = test(val_data, k=10)
z.write(f'Epoch: {epoch:03d}, Val Mean Rank: {rank:.2f}, Val Hits@10: {hits:.4f}\n')
z.flush()
'''
k_values = [1, 3, 10]
results = {}
for k in k_values:
results[k] = test(test_data, k)
for k in k_values:
rank, hits_at_k = results[k]
z.write(f'Test Mean Rank: {rank:.2f}, Test Hits@{k}: {hits_at_k:.4f}\n')
z.flush()
end_time = time.ctime()
z.write(f'Calculate embeddings with TransE end at: {end_time}\n')
z.flush()
print('Calculate embeddings with TransE end at: ', end_time)
print('Done training')
#Save the trained TransE embeddings for the entites and for the relations in csv files
entity_embeddings = model.node_emb.weight.cpu().detach().numpy()
#path to the output entity embeddings file
np.savetxt('.../entity_embeddings_transe.csv', entity_embeddings, delimiter=',')
relation_embeddings = model.rel_emb.weight.cpu().detach().numpy()
#path to the output relation embeddings file
np.savetxt('.../relation_embeddings_transe.csv', relation_embeddings, delimiter=',')
print('Done')