-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathlosses.py
53 lines (35 loc) · 1.37 KB
/
losses.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
from typing import Tuple
import torch
from torch import Tensor
def log(x: Tensor) -> Tensor:
"""custom log function to prevent log of zero(infinity/NaN) problem."""
return torch.log(torch.max(x, torch.tensor(1e-6).to(x.device)))
# Least Squares Generative Adversarial Networks: https://arxiv.org/abs/1611.04076
def least_square_d_loss(real_score: Tensor, fake_score: Tensor) -> Tuple[Tensor, Tensor, Tensor]:
""""
Least Squares GAN - Discriminator loss
(set a=−1,b=1,c=0 for Pearson setup)
"""
# b = 1
real_part = 0.5 * torch.mean((real_score - 1)**2)
# a = 0
fake_part = 0.5 * torch.mean(fake_score ** 2)
loss = real_part + fake_part
return loss, real_part, fake_part
def least_square_g_loss(fake_score: Tensor, real_score: Tensor = None) -> Tensor:
""""
Least Squares GAN - Generator loss
"""
# c = 1
return 0.5 * torch.mean((fake_score - 1) ** 2)
def standard_d_loss(real_score: Tensor, fake_score: Tensor) -> Tuple[Tensor, Tensor, Tensor]:
# -log[d(x)]
real_part = 0.5 * torch.mean(-log(real_score))
# -log[1 - d(g(z))]
fake_part = 0.5 * torch.mean(-log(1.0 - fake_score))
loss = real_part + fake_part
return loss, real_part, fake_part
def standard_g_loss(fake_score: Tensor, real_score: Tensor = None) -> Tensor:
return 1.0 * torch.mean(log(1 - fake_score))
def heuristic_g_loss(fake_score: Tensor) -> Tensor:
return 1.0 * torch.mean(-log(fake_score))