-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcsv-to-gpt.py
128 lines (101 loc) · 3.63 KB
/
csv-to-gpt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import json
import os
import openai
import pymysql
import redis
# MySQL 연결 설정
conn = pymysql.connect(
host="skku-db",
port=3306,
user="skku-user",
password="skku-pw",
db="skku",
charset='utf8'
)
# Redis 연결 설정
redis_client = redis.StrictRedis(host='skku-redis', port=6379, db=0,
decode_responses=True)
SEARCH_PREFIX = "SR:"
MAX_HISTORY = 5
# OpenAI API 키 설정
openai.api_key = os.getenv("OPENAI_API_KEY")
def get_search_queries(user_id):
key = f"{SEARCH_PREFIX}{user_id}"
return redis_client.lrange(key, 0, MAX_HISTORY - 1)
def get_filtered_restaurants():
query_restaurants = """
SELECT id, name, original_categories, naver_rating_avg, naver_review_count
FROM restaurants
WHERE naver_rating_avg >= 4.5 AND naver_review_count >= 200;
"""
with conn.cursor() as cursor:
cursor.execute(query_restaurants)
return cursor.fetchall()
def get_user_liked_restaurants():
query_liked_restaurants = """
SELECT u.id AS user_id, r.name AS restaurant_name, r.original_categories AS category
FROM users u
JOIN restaurant_likes rl ON u.id = rl.user_id
JOIN restaurants r ON rl.restaurant_id = r.id;
"""
with conn.cursor() as cursor:
cursor.execute(query_liked_restaurants)
return cursor.fetchall()
def get_gpt_recommendations(user_data, restaurant_data):
prompt = f"""
유저가 데이터랑, 음식점 데이터를 보여줄게.
이걸 기반으로 음식점을 20개 추천해줘.
다른 이야기는 다 빼고 추천할 음식점id를 ","기반으로 구분해서 리스트로 알려줘
User Data:
{json.dumps(user_data)}
Restaurant Data:
{json.dumps(restaurant_data)}
"""
response = openai.ChatCompletion.create(
model="gpt-4-turbo",
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": prompt}
],
max_tokens=2000
)
return response['choices'][0]['message']['content'].strip()
def save_recommendations_to_redis(user_id, recommendations):
key = f"RECOMMENDATION:{user_id}"
redis_client.delete(key)
redis_client.set(key, recommendations)
redis_client.expire(key, 3600 * 24 * 3)
def save_all_restaurants_to_redis(filtered_restaurants):
all_restaurant_ids = [str(restaurant[0]) for restaurant in
filtered_restaurants]
recommendations_string = ','.join(all_restaurant_ids)
save_recommendations_to_redis(0, recommendations_string)
filtered_restaurants = get_filtered_restaurants()
user_liked_restaurants = get_user_liked_restaurants()
user_data = {}
for liked_restaurant in user_liked_restaurants:
user_id = liked_restaurant[0]
restaurant_name = liked_restaurant[1]
category = liked_restaurant[2]
if user_id not in user_data:
user_data[user_id] = {'liked_restaurants': [], 'recent_searches': []}
user_data[user_id]['liked_restaurants'].append({
'restaurant_name': restaurant_name,
'category': category
})
for user_id in user_data.keys():
recent_searches = get_search_queries(user_id)
user_data[user_id]['recent_searches'] = recent_searches
restaurant_data = [dict(zip(
['id', 'name', 'original_categories', 'naver_rating_avg',
'naver_review_count'], restaurant)) for restaurant in filtered_restaurants]
print("restaurant_data", restaurant_data, "length:", len(restaurant_data))
for user_id, data in user_data.items():
print("user_id", user_id, "data", data)
try:
recommendations = get_gpt_recommendations(data, restaurant_data)
except:
continue
print(recommendations)
save_recommendations_to_redis(user_id, recommendations)
save_all_restaurants_to_redis(filtered_restaurants)