forked from MengtingWan/KDEm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRKDE.py
155 lines (140 loc) · 4.52 KB
/
RKDE.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
# -*- coding: utf-8 -*-
"""
Created on Mon Feb 1 17:23:20 2016
@author: mwan
"""
from __future__ import division
import numpy as np
import numpy.linalg as la
import basic_functions as bsf
def compute_a(norm_M, n, para=np.array([0.5,0.75,0.85])):
a_vec = np.zeros((n,3))
for i in range(n):
tmp = sorted(np.sqrt(norm_M[i]))
for j in range(3):
if(para[j]>0):
a_vec[i,j] = tmp[np.int(len(tmp)*para[j])]
else:
a_vec[i,j] = tmp[-1] + 0.1
return(a_vec)
def loss(x, method, a_vec=np.zeros(3)):
rtn = 0
if(sum(a_vec)==0):
tmp = sorted(x)
a_vec[0] = tmp[np.int(len(tmp)*0.5)]
a_vec[1] = tmp[np.int(len(tmp)*0.75)]
a_vec[2] = tmp[np.int(len(tmp)*0.85)]
a = a_vec[0]
b = a_vec[1]
c = a_vec[2]
if(sum(x<0)==0):
rtn = np.zeros(len(x))
rtn[x<=a] = x[x<=a]**2/2
rtn[(x>a)*(x<=b)] = a*x[(x>a)*(x<=b)]-a*a/2
rtn[(x>b)*(x<=c)] = a*(x[(x>b)*(x<=c)]-c)**2/(2*(b-c))+a*(b+c-a)/2
rtn[x>c] = a*(b+c-a)/2
'''
tmp = x[x<=c]/c
rtn[x<=c] = 1-(1-tmp**2)**3
rtn[x>c] = 1
'''
#rtn = a**2*np.log(1+(x/a)**2)
#rtn = a**2*(np.sqrt(1+(x/a)**2)-1)
return(rtn)
def loss_dev(x, method, a_vec=np.zeros(3)):
rtn = 0
if(sum(a_vec)==0):
tmp = sorted(x)
a_vec[0] = tmp[np.int(len(tmp)*0.5)]
a_vec[1] = tmp[np.int(len(tmp)*0.75)]
a_vec[2] = tmp[np.int(len(tmp)*0.85)]
a = a_vec[0]
b = a_vec[1]
c = a_vec[2]
if(sum(x<0)==0):
rtn = np.zeros(len(x))
rtn[x<=a] = x[x<=a]
rtn[(x>a)*(x<=b)] = a
rtn[(x>b)*(x<=c)] = a*(x[(x>b)*(x<=c)]-c)/(b-c)
rtn[x>c] = 0
'''
tmp = x[x<=c]/c
rtn[x<=c] = 6*tmp/c*(1-tmp**2)**2
'''
#rtn = 2*x/(1+(x/a)**2)
#rtn = 2*x/np.sqrt(1+(x/a)**2)
return(rtn)
def update_w_RKDE(index, m, n, c_vec, norm_M, a_vec, method):
w_M = []
for i in range(n):
w_i = np.zeros(len(index[i]))
tmp = c_vec[index[i]] * loss_dev(np.sqrt(norm_M[i]), method, a_vec[i,:])/np.sqrt(norm_M[i])
w_i[norm_M[i]>0] = tmp[norm_M[i]>0]
tmp1 = sum(w_i)
if(tmp1>0):
w_M.append(w_i/tmp1)
else:
w_i[norm_M[i]==0] = 1
tmp1 = sum(w_i)
if(tmp1>0):
w_M.append(w_i/tmp1)
else:
w_M.append(np.ones(len(w_i))/len(w_i))
return(w_M)
def update_c_RKDE(index, m, n, count, norm_M, a_vec, method):
rtn = np.zeros(m)
for i in range(n):
rtn[index[i]] = rtn[index[i]] + loss(np.sqrt(norm_M[i]), method, a_vec[i,:])/len(index[i])
#rtn[rtn>0] = rtn[rtn>0]/count[rtn>0]
tmp = np.sum(rtn)
if(tmp>0):
rtn[rtn>0] = np.copy(-np.log((rtn[rtn>0]/count[rtn>0])/tmp))
return([rtn,tmp])
def RKDE(data, m, n, rho_para=np.array([0.5,0.75,0.85]), tol=1e-3, max_itr=99, method="Gaussian"):
index,claim,count = bsf.extract(data, m, n)
w_M = []
for i in range(n):
l = len(index[i])
w_M.append(np.ones(l)/l)
kernel_M = bsf.get_kernel_matrix(claim, n, method)
norm_M = bsf.get_norm_matrix(kernel_M, n, w_M, method)
c_vec = np.ones(m)
a_vec = compute_a(norm_M, n, rho_para)
w_M = []
for i in range(n):
kernel_m = np.copy(kernel_M[i])
w_i, norm = RKDE_single(index[i], m, n, c_vec, kernel_m, a_vec[i,:], method, max_itr=max_itr, tol=1e-3)
w_M.append(w_i)
return(w_M)
def RKDE_single(index, m, n, c_vec, kernel_m, a_vec, method, max_itr=50, tol=1e-2):
err = 99
itr = 1
w_i = np.ones(len(index))/len(index)
term1 = np.diag(kernel_m)
term2 = np.dot(kernel_m,w_i)
term3 = np.dot(w_i,term2)
norm = term1-2*term2+term3
norm[norm<0] = 0
while((err > tol) & (itr < max_itr)):
itr=itr+1
w_old = np.copy(w_i)
w_i = np.zeros(len(index))
tmp = c_vec[index]*loss_dev(np.sqrt(norm), method, a_vec)/np.sqrt(norm)
w_i[norm>0] = tmp[norm>0]
tmp1 = sum(w_i)
if(tmp1>0):
w_i = w_i/tmp1
else:
w_i[norm==0] = 1
tmp1 =sum(w_i)
if(tmp1>0):
w_i = w_i/tmp1
else:
w_i = np.ones(len(w_i))/len(w_i)
term2 = np.dot(kernel_m,w_i)
term3 = np.dot(w_i,term2)
norm = term1-2*term2+term3
norm[norm<0] = 0
err = la.norm(w_i-w_old)/la.norm(w_old)
#print itr, err
return([w_i, norm])