Skip to content

Latest commit

 

History

History
327 lines (254 loc) · 8.36 KB

README.md

File metadata and controls

327 lines (254 loc) · 8.36 KB

Genome annotation pipeline

By Yang Mei

Institution: Zhejiang University

Email: [email protected]

Cite:

Yang Mei, Dong Jing, Shenyang Tang, Xi Chen, Hao Chen, Haonan Duanmu, Yuyang Cong, Mengyao Chen, Xinhai Ye, Hang Zhou, Kang He, Fei Li, InsectBase 2.0: a comprehensive gene resource for insects, Nucleic Acids Research, Volume 50, Issue D1, 7 January 2022, Pages D1040–D1045, https://doi.org/10.1093/nar/gkab1090.


1. Prerequisites

1. Software

  1. BUSCO (https://busco.ezlab.org/) (compleasm(https://github.com/huangnengCSU/compleasm), compleasm: a faster and more accurate reimplementation of BUSCO)
  2. RepeatMasker, RepeatModeler (http://www.repeatmasker.org/)
  3. HISAT2 (http://daehwankimlab.github.io/hisat2/)
  4. StringTie (http://ccb.jhu.edu/software/stringtie/)
  5. TransDecoder (https://github.com/TransDecoder/TransDecoder)
  6. BRAKER (https://github.com/Gaius-Augustus/BRAKER)
  7. NCBI BLAST+ (https://blast.ncbi.nlm.nih.gov/Blast.cgi)
  8. miniprot (https://github.com/lh3/miniprot)
  9. EVidenceModeler (https://github.com/EVidenceModeler/EVidenceModeler/wiki)
  10. PASA (https://github.com/PASApipeline/PASApipeline/wiki)
  11. gffread (https://github.com/gpertea/gffread)

2. DataSet

  1. RNA-seq (https://www.ncbi.nlm.nih.gov/sra/)
  2. Homology protein (https://bioinf.uni-greifswald.de/bioinf/partitioned_odb11/)

2. Genome assessment

BUSCO v5

  • genome.fa
  • insecta_odb10
busco --cpu 28 \
	-l /gpfs/home/meiyang/opt/insecta_odb10 \
	-m genome --force -o busco \
	-i genome.fa \
	--offline
cat out/short_summary.specific.insecta_odb10.out.txt

or you can try compleasm, a faster and more accurate reimplementation of BUSCO

compleasm

compleasm.py run -t16 -l insecta -L /data/ -a genome.fa -o busco

Note: the organization of the lineage file downloaded by compleasm is different from that of BUSCO.


3. Repeat annotation and genome mask

1. RepeatModeler v2 & RepeatMasker

  • genome.fa

Building reference repeat database

# RepeatMasker
famdb.py -i Libraries/RepeatMaskerLib.h5 families -f embl  -a -d Insecta  > Insecta_ad.embl
util/buildRMLibFromEMBL.pl Insecta_ad.embl > Insecta_ad.fa

# RepeatModeler
mkdir 01_RepeatModeler
BuildDatabase -name GDB -engine ncbi ../genome.fa > BuildDatabase.log
RepeatModeler -engine ncbi -pa 28 -database GDB -LTRStruct > RepeatModele.log
cd ../

Running RepeatMasker for genome masking

# RepeatMasker
mkdir 02_RepeatMasker
cat 01_RepeatModeler/GDB-families.fa Insecta_ad.fa > repeat_db.fa

Run RepeatMasker

RepeatMasker -xsmall -gff -html -lib repeat_db.fa -pa 28 genome.fa > RepeatMasker.log
  • genome.fa.masked

2. EDTA

EDTA.pl --genome female.fa --species others --sensitive 1 --anno 1 --evaluate 1 --threads 30

4. Gene prediction

1. RNA-seq based gene prediction

1. HISAT2 & StringTie
  • masked geome (genome.fa)
  • transcriptome

Build genome index

hisat2-build -p 28 genome.fa genome

Mapping to genome

# single end
hisat2 -p 28 -x genome --dta -U reads.fq | samtools sort -@ 28 > reads.bam 
# paired end
hisat2 -p 28 -x genome --dta -1 reads_1.fq -2 reads_2.fq | samtools sort -@ 28 > reads.bam

Batch running

# single end
single_list = './single.txt'
for run in `cat $single_list`
do
	hisat2 -p 28 -x genome --dta -U ${run}.fq | samtools sort -@ 28 > ${run}.bam
done
# paired end
paired_list = './paired.txt'
for run in `cat $paired_list`
do
	hisat2 -p 28 -x genome --dta -1 ${run}_1.fq -2 ${run}_2.fq | samtools sort -@ 28 > ${run}.bam
done

GTF merging

samtools merge -@ 28 merged.bam `ls *bam`
stringtie -p 28 -o stringtie.gtf merged.bam
  • stringtie.gtf
2. TransDecoder
  • masked geome (genome.fa)
  • stringtie.gtf
util/gtf_genome_to_cdna_fasta.pl stringtie.gtf genome.fa > transcripts.fasta
util/gtf_to_alignment_gff3.pl stringtie.gtf > transcripts.gff3
TransDecoder.LongOrfs -t transcripts.fasta

# homology search
blastp -query transdecoder_dir/longest_orfs.pep -db uniprot_sprot.fasta  -max_target_seqs 1 -outfmt 6 -evalue 1e-5 -num_threads 28 > blastp.outfmt6
hmmscan --cpu 28 --domtblout pfam.domtblout Pfam-A.hmm transdecoder_dir/longest_orfs.pep

TransDecoder.Predict -t transcripts.fasta --retain_pfam_hits pfam.domtblout --retain_blastp_hits blastp.outfmt6
util/cdna_alignment_orf_to_genome_orf.pl transcripts.fasta.transdecoder.gff3 transcripts.gff3 transcripts.fasta > transcripts.fasta.transdecoder.genome.gff3

mv transcripts.fasta.transdecoder.genome.gff3 transcript_alignments.gff3
  • transcript_alignments.gff3

2. Ab initio gene prediction

BRAKER v3
  • masked geome (genome.fa)
  • homology protein (OrthoDB), Arthropoda.fa

Parameters

--species=<species_name>
--min_contig, less than genome N50
braker.pl --genome=genome.fa \
	--species=Sfru \
	--prot_seq=Arthropoda.fa \
	--bam=merged.bam \
	--threads 30 \
	--gff3 --workingdir=out

python gff_rename.py braker.gff3 sfru > gene_predictions.gff3
  • gene_predictions.gff3

3. Homology-based gene prediction

miniprot
  • masked geome (genome.fa.masked)
  • homology protein (OrthoDB), Arthropoda.fa
miniprot -t28 -d genome.mpi genome.fa.masked 
miniprot -It28 --gff genome.mpi protein.fasta > miniprot.gff3
  • miniprot.gff3

5. EVidenceModeler (EVM)

1. Preparing Inputs

  • masked geome (genome.fa)
  • weights.txt

weights.txt

PROTEIN	miniprot	5
ABINITIO_PREDICTION	BRAKER3	10
OTHER_PREDICTION	transdecoder	10

The gff3 file of miniprot should be reformated.

python ~/software/EVidenceModeler-v2.1.0/EvmUtils/misc/miniprot_GFF_2_EVM_alignment_GFF3.py miniprot.gff3 > protein_alignmentss.gff3

GFF3 file

  • gene_predictions.gff3
  • protein_alignments.gff3
  • transcript_alignments.gff3

Check the gff3 file (Optional)

gff3_gene_prediction_file_validator.pl your.gff3

2. Run

EVidenceModeler \
	--sample_id speceis \
	--genome genome.fa \
	--weights weights.txt  \
	--gene_predictions gff/gene_predictions.gff3 \
	--protein_alignments gff/protein_alignments.gff3 \
	--transcript_alignments gff/transcript_alignments.gff3 \
	--segmentSize 100000 --overlapSize 10000 --CPU 20
  • species.evm.gff3

6. OGS annotation

1. OGS annotation updates

1. PASApipeline
  • masked geome (genome.fa)
  • species.evm.gff3
  • stringtie.gtf

PASA alignment Assembly

util/gtf_genome_to_cdna_fasta.pl stringtie.gtf genome.fa > transcripts.fasta
bin/seqclean transcripts.fasta

Transcripts alignments, alignAssembly.config, set up the mysql database name; CPU <= 16

Launch_PASA_pipeline.pl -c alignAssembly.config -C -R -g genome.fa -t transcripts.fasta.clean -T -u transcripts.fasta --ALIGNERS blat --CPU 16

# two cycles !!! of annotation loading, annotation comparison, and annotation updates
# check gff3
misc_utilities/pasa_gff3_validator.pl species.evm.gff3

# load annotation
scripts/Load_Current_Gene_Annotations.dbi -c alignAssembly.config -g genome.fa -P species.evm.gff3

# update
# annotCompare.config, set up the mysql database name same as alignAssembly.config
Launch_PASA_pipeline.pl -c annotCompare.config -A -g genome.fa -t transcripts.fasta.clean
2. peaks2utr
peaks2utr -p 20 species.evm.gff3 merged.bam

2. Collect GFF, cds, PEP

  • gene_structures_post_PASA_updates.gff3
# rename gff3
# species name, Sfru
python gff_rename.py gene_structures_post_PASA_updates.gff3 Sfru > Sfru.gff3

# collect
gffread Sfru.gff3 -g genome.fa -x Sfru_cds.fa -y Sfru_pep.fa

# collect no alt gff, cds, pep 
python Collect_no_alt.py pep.fa cds.fa Sfru.gff3
# no_alt.gff3, cds_no_alt.fa, pep_no_alt.fa
  • Sfru.gff3 (Sfru_no_alt.gff3)
  • cds.fa (cds_no_alt.fa)
  • pep.fa (pep_no_alt.fa)

3. Function annotation

eggNOG-mapper
  • pep_no_alt.fa

http://eggnog-mapper.embl.de/

PANNZER

http://ekhidna2.biocenter.helsinki.fi/sanspanz/