diff --git a/PCP_07_exp.html b/PCP_07_exp.html index 33e184b..b69aed6 100644 --- a/PCP_07_exp.html +++ b/PCP_07_exp.html @@ -13137,7 +13137,7 @@

Power Series
@@ -13194,7 +13204,7 @@

Exponentiation Identity and

-
In [ ]:
+
In [2]:
from matplotlib import ticker 
@@ -13232,6 +13242,24 @@ 

Exponentiation Identity and

+
+
+
+
+
+
/tmp/ipykernel_277743/1914264468.py:4: MatplotlibDeprecationWarning: The get_cmap function was deprecated in Matplotlib 3.7 and will be removed two minor releases later. Use ``matplotlib.colormaps[name]`` or ``matplotlib.colormaps.get_cmap(obj)`` instead.
+  cmap = plt.cm.get_cmap('hsv') # hsv is nice because it defines a circular color map
+
+
+
+
+
+
+No description has been provided for this image +
+
+
+
@@ -13267,7 +13295,7 @@

Differential Equations
-
In [ ]:
+
In [3]:
@@ -13343,7 +13381,7 @@

Roots of Unity
-
In [ ]:
+
In [4]:
@@ -13416,7 +13464,7 @@

Exercises and Results
-
In [ ]:
+
In [5]:
import libpcp.exp
@@ -13439,7 +13487,7 @@ 

Exercises and Results
-
In [ ]:
+
In [6]:
#<solution>
@@ -13452,7 +13500,7 @@ 

Exercises and Results
-
In [ ]:
+
In [7]:
+
+
+
+
+
+
Input argument z = 1
+N =   1, Numpy = 2.7182818285, Approx1 = 2.0000000000, Approx2 = 2.0000000000
+N =   2, Numpy = 2.7182818285, Approx1 = 2.5000000000, Approx2 = 2.2500000000
+N =   4, Numpy = 2.7182818285, Approx1 = 2.7083333333, Approx2 = 2.4414062500
+N =   8, Numpy = 2.7182818285, Approx1 = 2.7182787698, Approx2 = 2.5657845140
+N =  16, Numpy = 2.7182818285, Approx1 = 2.7182818285, Approx2 = 2.6379284974
+N =  32, Numpy = 2.7182818285, Approx1 = 2.7182818285, Approx2 = 2.6769901294
+Input argument z = (2.0, 0.7)
+N =   1, Numpy = (5.651462, 4.760161), Approx1 = (3.000000, 0.700000), Approx2 = (3.000000, 0.700000)
+N =   2, Numpy = (5.651462, 4.760161), Approx1 = (4.755000, 2.100000), Approx2 = (3.877500, 1.400000)
+N =   4, Numpy = (5.651462, 4.760161), Approx1 = (5.785004, 4.261833), Approx2 = (4.650000, 2.330344)
+N =   8, Numpy = (5.651462, 4.760161), Approx1 = (5.654404, 4.760077), Approx2 = (5.152687, 3.223932)
+N =  16, Numpy = (5.651462, 4.760161), Approx1 = (5.651462, 4.760161), Approx2 = (5.415734, 3.881969)
+N =  32, Numpy = (5.651462, 4.760161), Approx1 = (5.651462, 4.760161), Approx2 = (5.540143, 4.288473)
+N =  64, Numpy = (5.651462, 4.760161), Approx1 = (5.651462, 4.760161), Approx2 = (5.597987, 4.515429)
+N = 128, Numpy = (5.651462, 4.760161), Approx1 = (5.651462, 4.760161), Approx2 = (5.625352, 4.635473)
+N = 256, Numpy = (5.651462, 4.760161), Approx1 = (5.651462, 4.760161), Approx2 = (5.638575, 4.697223)
+N = 512, Numpy = (5.651462, 4.760161), Approx1 = (5.651462, 4.760161), Approx2 = (5.645062, 4.728542)
+
+
+
+
+