-
Notifications
You must be signed in to change notification settings - Fork 88
/
tf-model-manip.py
370 lines (315 loc) · 12.4 KB
/
tf-model-manip.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
#!/usr/bin/env mdl
# -*- coding: utf-8 -*-
# =======================================
# File Name :
# Purpose :
# Creation Date :
# Last Modified :
# Created By : sunpeiqin
# =======================================
import os
import sys
import argparse
import magic
import keyword
import importlib
import collections
import re
import tabulate
import numpy as np
import tensorflow as tf
def sizeof_fmt(num, suffix='B'):
for unit in ['','Ki','Mi','Gi','Ti','Pi','Ei','Zi']:
if abs(num) < 1024.0:
return "{:3.3f} {}{}".format(num, unit, suffix)
num /= 1024.0
sign_str = '-' if num < 0 else ''
return "{}{:.1f} {}{}".format(sign_str, num, 'Yi', suffix)
def import_python_source_as_module(fpath, mod_name=None):
""" import a python source as a module; its directory is added to
``sys.path`` during importing, and ``sys.path`` would be restored
afterwards.
Modules newly loaded in the same directory as *fpath* would have an
attribute `__dynamic_loaded_by_spq__` set to 1, and fpath itself would
have that value set to 2.
:type fpath: str
:param fpath: python source file path
:type mod_name: str or None
:param mod_name: target module name; if it exists in `sys.modules`, the
corresponding module would be directly returned; otherwise it is added
to ``sys.modules`` afterward. If it is None, module name would be
derived from *fpath* by replacing '/' to '.' and special chars to '_'
"""
fpath = os.path.realpath(fpath)
if mod_name is None:
# automatically generate mod_name
mod_name = []
for i in fpath.split(os.path.sep):
v = ''
for j in i:
if not j.isidentifier() and not j.isdigit():
j = '_'
v += j
if not v.isidentifier() or keyword.iskeyword(v):
v = '_' + v
assert v.isidentifier() and not keyword.iskeyword(v), (
'failed to convert to python identifier: in={} out={}'.format(
i, v))
mod_name.append(v)
mod_name = '_'.join(mod_name)
if mod_name in sys.modules:
return sys.modules[mod_name]
old_path = sys.path[:]
mod_dir = os.path.dirname(fpath)
sys.path.append(mod_dir)
old_mod_names = set(sys.modules.keys())
try:
final_mod = importlib.machinery.SourceFileLoader(
mod_name, fpath).load_module()
finally:
sys.path.remove(mod_dir)
sys.modules[mod_name] = final_mod
for name, mod in list(sys.modules.items()):
if name in old_mod_names:
continue
try:
fpath = getattr(mod, '__file__', None)
except Exception as exc:
print('caught exception {} while trying to get '
'read __file__ attr from {}'.format(repr(exc), name))
continue
if fpath is not None and (
os.path.dirname(os.path.realpath(fpath)).startswith(mod_dir)):
try:
mod.__dynamic_loaded_by_spq__ = 1
except Exception:
pass
try:
final_mod.__dynamic_loaded_by_spq__ = 2
except Exception:
pass
return final_mod
def load_network(network, get_kwargs={}):
'''load a model defined by model.py'''
network = os.path.realpath(network)
mf = magic.from_file(network, mime=True)
mf = mf.decode('utf-8') if isinstance(mf, bytes) else mf
if mf.startswith('text'):
return import_python_source_as_module(network).Model().build()
else:
print('Only supports a model.py which defines a network')
exit(0)
def compute_receptiveField_and_stride(nodes):
stride_list = []
receptive_field_list = []
new_nodes = collections.OrderedDict()
for k, v_dict in nodes.items():
data_format = v_dict.get('data_format', None)
ksize = v_dict.get('ksize', [])
shape = v_dict.get('shape', [])
strides = v_dict.get('strides', [])
if data_format == 'NHWC':
h_stride, w_stride = strides[1], strides[2]
if ksize:
h_size, w_size = ksize[1], ksize[2]
else:
h_size, w_size = shape[0], shape[1]
elif data_format == 'NCHW':
h_stride, w_stride = strides[2], strides[3]
if ksize:
h_size, w_size = ksize[2], ksize[3]
else:
h_size, w_size = shape[0], shape[1]
else:
continue
if not stride_list:
receptive_field_list.append((h_size, w_size))
stride_list.append((h_stride, w_stride))
else:
pre_s = stride_list[-1]
pre_rf = receptive_field_list[-1]
stride_list.append((h_stride * pre_s[0], w_stride * pre_s[1]))
receptive_field_list.append((h_size * pre_s[0] + pre_rf[0] - pre_s[0],
w_size * pre_s[1] + pre_rf[1] - pre_s[1]))
nodes[k].update({
'receptive_field': receptive_field_list[-1],
'g_stride': stride_list[-1],
})
new_nodes.update({k:nodes[k]})
return new_nodes
class InfoAction:
@classmethod
def add_subparser(cls, subparsers):
parser = subparsers.add_parser(
'info', help='view some summary infomation in text')
parser.set_defaults(func=cls.run)
@classmethod
def run(cls, args):
sess = tf.Session()
sess.run(tf.global_variables_initializer()) # must init graph
cls._cache = collections.OrderedDict()
cls.param_stats(sess)
cls.flops_stats(sess)
cls.summary(sess)
@classmethod
def summary(cls, sess):
data = [['item', 'value']]
data.extend(list(cls._cache.items()))
print('\n'*2)
print('summary\n' + tabulate.tabulate(data))
@classmethod
def param_stats(cls, sess, bar_length_max=20):
tot_param_dim, param_size_bit = 0, 0
data = []
for param in tf.trainable_variables():
value = sess.run(param)
param_dim = np.prod(value.shape)
tot_param_dim += int(param_dim)
nbits = int(re.findall(r"\d+", str(param.dtype))[0])
param_size_bit += param_dim * nbits
# fill data
data.append(dict(
name=param.name,
shape=param.get_shape(),
param_dim=param_dim,
param_type=param.dtype,
size=sizeof_fmt(param_dim * nbits / 8),
size_cum=sizeof_fmt(tot_param_dim * nbits / 8),
mean='{:.2g}'.format(value.mean()),
std='{:.2g}'.format(value.std()),
))
for d in data:
ratio = d['param_dim'] / tot_param_dim
d['ratio'] = ratio
d['percentage'] = '{:.2f}%'.format(ratio * 100)
# construct bar
max_ratio = max([d['ratio'] for d in data])
for d in data:
bar_length = int(d['ratio'] / max_ratio * bar_length_max)
d['size_bar'] = '#' * bar_length
param_size = sizeof_fmt(param_size_bit / 8)
data.append(dict(
name='total',
param_dim=tot_param_dim,
size=param_size,
))
cls._cache['#params'] = len(data)
cls._cache['tot_param_dim'] = tot_param_dim
cls._cache['param_size'] = param_size
cls._param_size = param_size_bit / 8
header = [
'name', 'shape', 'mean', 'std', 'param_dim', 'size', 'size_cum',
'percentage', 'size_bar'
]
# make a table
print('\n'*2)
print('param stats: \n' + tabulate.tabulate(
cls._dict2table(data, header=header)))
@classmethod
def _dict2table(self, list_of_dict, header):
table_data = [header]
for d in list_of_dict:
row = []
for h in header:
v = ''
if h in d:
v = d[h]
row.append(v)
table_data.append(row)
return table_data
@classmethod
def flops_stats(cls, sess, bar_length_max=20):
nodes = [n for n in tf.get_default_graph().as_graph_def(add_shapes=True).node]
cls._cache['#nodes'] = len(nodes)
# get nodes which can affect recept filed and stride
rf_nodes = collections.OrderedDict()
for n in nodes:
if n.op in ['Conv2D', 'VariableV2']:
name_scope = '/'.join(n.name.split('/')[:-1])
if name_scope not in rf_nodes.keys():
rf_nodes[name_scope] = {}
if 'shape' in n.attr.keys() and not rf_nodes[name_scope].get('shape', []):
rf_nodes[name_scope].update(shape=[i.size for i in n.attr['shape'].shape.dim])
if 'strides' in n.attr.keys():
rf_nodes[name_scope].update(strides=list(n.attr['strides'].list.i))
rf_nodes[name_scope].update(data_format=n.attr['data_format'].s.decode('utf-8'))
rf_nodes[name_scope].update(operator=n)
if n.op in ['MaxPool', 'AvgPool']:
rf_nodes[n.name] = {
'ksize': list(n.attr['ksize'].list.i),
'strides': list(n.attr['ksize'].list.i),
'data_format': n.attr['data_format'].s.decode('utf-8'),
'operator': n,
}
rf_nodes = compute_receptiveField_and_stride(rf_nodes)
# find the input node (only data)
for n in nodes:
if n.op == 'Placeholder':
input_shape = [i.size for i in n.attr['shape'].shape.dim][1:]
break
for k, v_dict in rf_nodes.items():
if v_dict['data_format'] == 'NHWC':
v_dict['input_shape'] = input_shape
v_dict['output_shape'] = [i.size for i in v_dict['operator'].attr['_output_shapes'].list.shape[0].dim][1:]
elif v_dict['data_format'] == 'NCHW':
pass
if v_dict['operator'].op in ['Conv2D']:
ic = v_dict['input_shape'][-1]
v_dict['flops'] = np.prod(v_dict['output_shape']) * ic * np.prod(v_dict['shape'][:2])
elif v_dict['operator'].op in ['MaxPool', 'AvgPool']:
v_dict['flops'] = 0
input_shape = v_dict['output_shape']
opr_info = []
total_flops = 0
for k, v_dict in rf_nodes.items():
total_flops += v_dict['flops']
opr_info.append({
'opr_name': v_dict['operator'].name,
'opr_class': v_dict['operator'].op,
'input_shapes': v_dict['input_shape'],
'output_shapes': v_dict['output_shape'],
'flops_num': v_dict['flops'],
'flops_cum': total_flops,
'receptive_field': v_dict['receptive_field'],
'stride': v_dict['g_stride']
})
flops = [i['flops_num'] for i in opr_info]
max_flops = max(flops + [0])
for i in opr_info:
f = i['flops_num']
i['flops'] = sizeof_fmt(f, suffix='OPs')
fc = i['flops_cum']
i['flops_cum'] = sizeof_fmt(fc, suffix='OPs')
r = i['ratio'] = f / total_flops
i['percentage'] = '{:.2f}%'.format(r * 100)
bar_length = int(f / max_flops * bar_length_max)
i['bar'] = '#' * bar_length
header = ['opr_name', 'opr_class', 'input_shapes', 'output_shapes', 'receptive_field',
'stride', 'flops', 'flops_cum', 'percentage', 'bar']
total_flops_str = sizeof_fmt(total_flops, suffix='OPs')
#total_var_size = sum(sum(s[1] for s in i['output_shapes']) for i in opr_info)
opr_info.append(dict(
opr_name='total',
flops=total_flops_str,
#output_shapes=total_var_size
))
cls._cache['total_flops'] = total_flops_str
cls._cache['flops/param_size'] = '{:.3g}'.format(
total_flops / cls._param_size)
print('\n'*2)
print('flops stats: \n' + tabulate.tabulate(
cls._dict2table(opr_info, header=header)))
if __name__ == "__main__":
actions = [InfoAction,]
parser = argparse.ArgumentParser()
parser.add_argument('network')
subparsers = parser.add_subparsers(help='action')
for i in actions:
i.add_subparser(subparsers)
args = parser.parse_args()
# load network
load_network(args.network)
if hasattr(args, 'func'):
args.func(args)
else:
print('no action given')