-
Notifications
You must be signed in to change notification settings - Fork 95
/
submit_dance.py
504 lines (434 loc) · 20.4 KB
/
submit_dance.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
# ------------------------------------------------------------------------
# Copyright (c) 2021 megvii-model. All Rights Reserved.
# ------------------------------------------------------------------------
# Modified from Deformable DETR (https://github.com/fundamentalvision/Deformable-DETR)
# Copyright (c) 2020 SenseTime. All Rights Reserved.
# ------------------------------------------------------------------------
# Modified from DETR (https://github.com/facebookresearch/detr)
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
# ------------------------------------------------------------------------
"""
SORT: A Simple, Online and Realtime Tracker
Copyright (C) 2016-2020 Alex Bewley [email protected]
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
"""
from __future__ import print_function
import os
import numpy as np
import random
import argparse
import torchvision.transforms.functional as F
import torch
import cv2
from tqdm import tqdm
from pathlib import Path
from PIL import Image, ImageDraw
from models import build_model
from util.tool import load_model
from main import get_args_parser
from torch.nn.functional import interpolate
from typing import List
from util.evaluation import Evaluator
import motmetrics as mm
import shutil
from models.structures import Instances
from torch.utils.data import Dataset, DataLoader
np.random.seed(2020)
COLORS_10 = [(144, 238, 144), (178, 34, 34), (221, 160, 221), (0, 255, 0), (0, 128, 0), (210, 105, 30), (220, 20, 60),
(192, 192, 192), (255, 228, 196), (50, 205, 50), (139, 0, 139), (100, 149, 237), (138, 43, 226),
(238, 130, 238),
(255, 0, 255), (0, 100, 0), (127, 255, 0), (255, 0, 255), (0, 0, 205), (255, 140, 0), (255, 239, 213),
(199, 21, 133), (124, 252, 0), (147, 112, 219), (106, 90, 205), (176, 196, 222), (65, 105, 225),
(173, 255, 47),
(255, 20, 147), (219, 112, 147), (186, 85, 211), (199, 21, 133), (148, 0, 211), (255, 99, 71),
(144, 238, 144),
(255, 255, 0), (230, 230, 250), (0, 0, 255), (128, 128, 0), (189, 183, 107), (255, 255, 224),
(128, 128, 128),
(105, 105, 105), (64, 224, 208), (205, 133, 63), (0, 128, 128), (72, 209, 204), (139, 69, 19),
(255, 245, 238),
(250, 240, 230), (152, 251, 152), (0, 255, 255), (135, 206, 235), (0, 191, 255), (176, 224, 230),
(0, 250, 154),
(245, 255, 250), (240, 230, 140), (245, 222, 179), (0, 139, 139), (143, 188, 143), (255, 0, 0),
(240, 128, 128),
(102, 205, 170), (60, 179, 113), (46, 139, 87), (165, 42, 42), (178, 34, 34), (175, 238, 238),
(255, 248, 220),
(218, 165, 32), (255, 250, 240), (253, 245, 230), (244, 164, 96), (210, 105, 30)]
def plot_one_box(x, img, color=None, label=None, score=None, line_thickness=None):
# Plots one bounding box on image img
# tl = line_thickness or round(
# 0.002 * max(img.shape[0:2])) + 1 # line thickness
tl = 2
color = color or [random.randint(0, 255) for _ in range(3)]
c1, c2 = (int(x[0]), int(x[1])), (int(x[2]), int(x[3]))
cv2.rectangle(img, c1, c2, color, thickness=tl)
if label:
tf = max(tl - 1, 1) # font thickness
t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0]
c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3
cv2.rectangle(img, c1, c2, color, -1) # filled
cv2.putText(img,
label, (c1[0], c1[1] - 2),
0,
tl / 3, [225, 255, 255],
thickness=tf,
lineType=cv2.LINE_AA)
if score is not None:
cv2.putText(img, score, (c1[0], c1[1] + 30), 0, tl / 3, [225, 255, 255], thickness=tf, lineType=cv2.LINE_AA)
return img
'''
deep sort 中的画图方法,在原图上进行作画
'''
def draw_bboxes(ori_img, bbox, identities=None, offset=(0, 0), cvt_color=False):
if cvt_color:
ori_img = cv2.cvtColor(np.asarray(ori_img), cv2.COLOR_RGB2BGR)
img = ori_img
for i, box in enumerate(bbox):
x1, y1, x2, y2 = [int(i) for i in box[:4]]
x1 += offset[0]
x2 += offset[0]
y1 += offset[1]
y2 += offset[1]
if len(box) > 4:
score = '{:.2f}'.format(box[4])
else:
score = None
# box text and bar
id = int(identities[i]) if identities is not None else 0
color = COLORS_10[id % len(COLORS_10)]
label = '{:d}'.format(id)
# t_size = cv2.getTextSize(label, cv2.FONT_HERSHEY_PLAIN, 2 , 2)[0]
img = plot_one_box([x1, y1, x2, y2], img, color, label, score=score)
return img
def draw_points(img: np.ndarray, points: np.ndarray, color=(255, 255, 255)) -> np.ndarray:
assert len(points.shape) == 2 and points.shape[1] == 2, 'invalid points shape: {}'.format(points.shape)
for i, (x, y) in enumerate(points):
if i >= 300:
color = (0, 255, 0)
cv2.circle(img, (int(x), int(y)), 2, color=color, thickness=2)
return img
def tensor_to_numpy(tensor: torch.Tensor) -> np.ndarray:
return tensor.detach().cpu().numpy()
class Track(object):
track_cnt = 0
def __init__(self, box):
self.box = box
self.time_since_update = 0
self.id = Track.track_cnt
Track.track_cnt += 1
self.miss = 0
def miss_one_frame(self):
self.miss += 1
def clear_miss(self):
self.miss = 0
def update(self, box):
self.box = box
self.clear_miss()
class MOTR(object):
def __init__(self, max_age=1, min_hits=3, iou_threshold=0.3):
"""
Sets key parameters for SORT
"""
self.max_age = max_age
self.min_hits = min_hits
self.iou_threshold = iou_threshold
self.trackers = []
self.frame_count = 0
self.active_trackers = {}
self.inactive_trackers = {}
self.disappeared_tracks = []
def _remove_track(self, slot_id):
self.inactive_trackers.pop(slot_id)
self.disappeared_tracks.append(slot_id)
def clear_disappeared_track(self):
self.disappeared_tracks = []
def update(self, dt_instances: Instances):
"""
Params:
dets - a numpy array of detections in the format [[x1,y1,x2,y2,score],[x1,y1,x2,y2,score],...]
Requires: this method must be called once for each frame even with empty detections (use np.empty((0, 5)) for frames without detections).
Returns the a similar array, where the last column is the object ID.
NOTE: The number of objects returned may differ from the number of detections provided.
"""
self.frame_count += 1
# get predicted locations from existing trackers.
dt_idxes = set(dt_instances.obj_idxes.tolist())
track_idxes = set(self.active_trackers.keys()).union(set(self.inactive_trackers.keys()))
matched_idxes = dt_idxes.intersection(track_idxes)
unmatched_tracker = track_idxes - matched_idxes
for track_id in unmatched_tracker:
# miss in this frame, move to inactive_trackers.
if track_id in self.active_trackers:
self.inactive_trackers[track_id] = self.active_trackers.pop(track_id)
self.inactive_trackers[track_id].miss_one_frame()
if self.inactive_trackers[track_id].miss > 10:
self._remove_track(track_id)
for i in range(len(dt_instances)):
idx = dt_instances.obj_idxes[i]
bbox = np.concatenate([dt_instances.boxes[i], dt_instances.scores[i:i+1]], axis=-1)
label = dt_instances.labels[i]
if label == 0:
# get a positive track.
if idx in self.inactive_trackers:
# set state of track active.
self.active_trackers[idx] = self.inactive_trackers.pop(idx)
if idx not in self.active_trackers:
# create a new track.
self.active_trackers[idx] = Track(idx)
self.active_trackers[idx].update(bbox)
elif label == 1:
# get an occluded track.
if idx in self.active_trackers:
# set state of track inactive.
self.inactive_trackers[idx] = self.active_trackers.pop(idx)
if idx not in self.inactive_trackers:
# It's strange to obtain a new occluded track.
# TODO: think more rational disposal.
self.inactive_trackers[idx] = Track(idx)
self.inactive_trackers[idx].miss_one_frame()
if self.inactive_trackers[idx].miss > 10:
self._remove_track(idx)
ret = []
for i in range(len(dt_instances)):
label = dt_instances.labels[i]
if label == 0:
id = dt_instances.obj_idxes[i]
box_with_score = np.concatenate([dt_instances.boxes[i], dt_instances.scores[i:i+1]], axis=-1)
ret.append(np.concatenate((box_with_score, [id + 1])).reshape(1, -1)) # +1 as MOT benchmark requires positive
if len(ret) > 0:
return np.concatenate(ret)
return np.empty((0, 6))
def load_label(label_path: str, img_size: tuple) -> dict:
labels0 = np.loadtxt(label_path, dtype=np.float32).reshape(-1, 6)
h, w = img_size
# Normalized cewh to pixel xyxy format
labels = labels0.copy()
labels[:, 2] = w * (labels0[:, 2] - labels0[:, 4] / 2)
labels[:, 3] = h * (labels0[:, 3] - labels0[:, 5] / 2)
labels[:, 4] = w * (labels0[:, 2] + labels0[:, 4] / 2)
labels[:, 5] = h * (labels0[:, 3] + labels0[:, 5] / 2)
targets = {'boxes': [], 'labels': [], 'area': []}
num_boxes = len(labels)
visited_ids = set()
for label in labels[:num_boxes]:
obj_id = label[1]
if obj_id in visited_ids:
continue
visited_ids.add(obj_id)
targets['boxes'].append(label[2:6].tolist())
targets['area'].append(label[4] * label[5])
targets['labels'].append(0)
targets['boxes'] = np.asarray(targets['boxes'])
targets['area'] = np.asarray(targets['area'])
targets['labels'] = np.asarray(targets['labels'])
return targets
def filter_pub_det(res_file, pub_det_file, filter_iou=False):
frame_boxes = {}
with open(pub_det_file, 'r') as f:
lines = f.readlines()
for line in lines:
if len(line) == 0:
continue
elements = line.strip().split(',')
frame_id = int(elements[0])
x1, y1, w, h = elements[2:6]
x1, y1, w, h = float(x1), float(y1), float(w), float(h)
x2 = x1 + w - 1
y2 = y1 + h - 1
if frame_id not in frame_boxes:
frame_boxes[frame_id] = []
frame_boxes[frame_id].append([x1, y1, x2, y2])
for frame, boxes in frame_boxes.items():
frame_boxes[frame] = np.array(boxes)
ids = {}
num_filter_box = 0
with open(res_file, 'r') as f:
lines = f.readlines()
with open(res_file, 'w') as f:
for line in lines:
if len(line) == 0:
continue
elements = line.strip().split(',')
frame_id, obj_id = elements[:2]
frame_id = int(frame_id)
obj_id = int(obj_id)
x1, y1, w, h = elements[2:6]
x1, y1, w, h = float(x1), float(y1), float(w), float(h)
x2 = x1 + w - 1
y2 = y1 + h - 1
if obj_id not in ids:
# track initialization.
if frame_id not in frame_boxes:
num_filter_box += 1
print("filter init box {} {}".format(frame_id, obj_id))
continue
pub_dt_boxes = frame_boxes[frame_id]
dt_box = np.array([[x1, y1, x2, y2]])
if filter_iou:
max_iou = bbox_iou(dt_box, pub_dt_boxes).max()
if max_iou < 0.5:
num_filter_box += 1
print("filter init box {} {}".format(frame_id, obj_id))
continue
else:
pub_dt_centers = (pub_dt_boxes[:, :2] + pub_dt_boxes[:, 2:4]) * 0.5
x_inside = (dt_box[0, 0] <= pub_dt_centers[:, 0]) & (dt_box[0, 2] >= pub_dt_centers[:, 0])
y_inside = (dt_box[0, 1] <= pub_dt_centers[:, 1]) & (dt_box[0, 3] >= pub_dt_centers[:, 1])
center_inside:np.ndarray = x_inside & y_inside
if not center_inside.any():
num_filter_box += 1
print("filter init box {} {}".format(frame_id, obj_id))
continue
print("save init track {} {}".format(frame_id, obj_id))
ids[obj_id] = True
f.write(line)
print("totally {} boxes are filtered.".format(num_filter_box))
class ListImgDataset(Dataset):
def __init__(self, img_list) -> None:
super().__init__()
self.img_list = img_list
'''
common settings
'''
self.img_height = 800
self.img_width = 1536
self.mean = [0.485, 0.456, 0.406]
self.std = [0.229, 0.224, 0.225]
def load_img_from_file(self, f_path):
label_path = f_path.replace('images', 'labels_with_ids').replace('.png', '.txt').replace('.jpg', '.txt')
cur_img = cv2.imread(f_path)
assert cur_img is not None, f_path
cur_img = cv2.cvtColor(cur_img, cv2.COLOR_BGR2RGB)
targets = load_label(label_path, cur_img.shape[:2]) if os.path.exists(label_path) else None
return cur_img, targets
def init_img(self, img):
ori_img = img.copy()
self.seq_h, self.seq_w = img.shape[:2]
scale = self.img_height / min(self.seq_h, self.seq_w)
if max(self.seq_h, self.seq_w) * scale > self.img_width:
scale = self.img_width / max(self.seq_h, self.seq_w)
target_h = int(self.seq_h * scale)
target_w = int(self.seq_w * scale)
img = cv2.resize(img, (target_w, target_h))
img = F.normalize(F.to_tensor(img), self.mean, self.std)
img = img.unsqueeze(0)
return img, ori_img
def __len__(self):
return len(self.img_list)
def __getitem__(self, index):
img, targets = self.load_img_from_file(self.img_list[index])
return self.init_img(img)
class Detector(object):
def __init__(self, args, model=None, seq_num=2):
self.args = args
self.detr = model
self.seq_num = seq_num
img_list = os.listdir(os.path.join(self.args.mot_path, 'DanceTrack/test', self.seq_num, 'img1'))
img_list = [os.path.join(self.args.mot_path, 'DanceTrack/test', self.seq_num, 'img1', _) for _ in img_list if
('jpg' in _) or ('png' in _)]
self.img_list = sorted(img_list)
self.img_len = len(self.img_list)
self.tr_tracker = MOTR()
self.save_path = os.path.join(self.args.output_dir, 'results/{}'.format(seq_num))
os.makedirs(self.save_path, exist_ok=True)
self.predict_path = os.path.join(self.args.output_dir, args.exp_name)
os.makedirs(self.predict_path, exist_ok=True)
if os.path.exists(os.path.join(self.predict_path, f'{self.seq_num}.txt')):
os.remove(os.path.join(self.predict_path, f'{self.seq_num}.txt'))
@staticmethod
def filter_dt_by_score(dt_instances: Instances, prob_threshold: float) -> Instances:
keep = dt_instances.scores > prob_threshold
return dt_instances[keep]
@staticmethod
def filter_dt_by_area(dt_instances: Instances, area_threshold: float) -> Instances:
wh = dt_instances.boxes[:, 2:4] - dt_instances.boxes[:, 0:2]
areas = wh[:, 0] * wh[:, 1]
keep = areas > area_threshold
return dt_instances[keep]
@staticmethod
def write_results(txt_path, frame_id, bbox_xyxy, identities):
save_format = '{frame},{id},{x1},{y1},{w},{h},1,-1,-1,-1\n'
with open(txt_path, 'a') as f:
for xyxy, track_id in zip(bbox_xyxy, identities):
if track_id < 0 or track_id is None:
continue
x1, y1, x2, y2 = xyxy
w, h = x2 - x1, y2 - y1
line = save_format.format(frame=int(frame_id), id=int(track_id), x1=x1, y1=y1, w=w, h=h)
f.write(line)
def eval_seq(self):
data_root = os.path.join(self.args.mot_path, 'MOT15/images/train')
result_filename = os.path.join(self.predict_path, 'gt.txt')
evaluator = Evaluator(data_root, self.seq_num)
accs = evaluator.eval_file(result_filename)
return accs
@staticmethod
def visualize_img_with_bbox(img_path, img, dt_instances: Instances, ref_pts=None, gt_boxes=None):
if dt_instances.has('scores'):
img_show = draw_bboxes(img, np.concatenate([dt_instances.boxes, dt_instances.scores.reshape(-1, 1)], axis=-1), dt_instances.obj_idxes)
else:
img_show = draw_bboxes(img, dt_instances.boxes, dt_instances.obj_idxes)
if ref_pts is not None:
img_show = draw_points(img_show, ref_pts)
if gt_boxes is not None:
img_show = draw_bboxes(img_show, gt_boxes, identities=np.ones((len(gt_boxes), )) * -1)
cv2.imwrite(img_path, img_show)
def detect(self, prob_threshold=0.7, area_threshold=100, vis=False):
last_dt_embedding = None
total_dts = 0
total_occlusion_dts = 0
track_instances = None
loader = DataLoader(ListImgDataset(self.img_list), 1, num_workers=2)
with open(os.path.join(self.predict_path, 'gt.txt'), 'w'):
pass
for i, (cur_img, ori_img) in enumerate(tqdm(loader)):
cur_img, ori_img = cur_img[0], ori_img[0]
# track_instances = None
if track_instances is not None:
track_instances.remove('boxes')
track_instances.remove('labels')
seq_h, seq_w, _ = ori_img.shape
res = self.detr.inference_single_image(cur_img.cuda().float(), (seq_h, seq_w), track_instances)
track_instances = res['track_instances']
all_ref_pts = tensor_to_numpy(res['ref_pts'][0, :, :2])
dt_instances = track_instances.to(torch.device('cpu'))
# filter det instances by score.
dt_instances = self.filter_dt_by_score(dt_instances, prob_threshold)
dt_instances = self.filter_dt_by_area(dt_instances, area_threshold)
total_dts += len(dt_instances)
if vis:
# for visual
cur_vis_img_path = os.path.join(self.save_path, 'frame_{}.jpg'.format(i))
gt_boxes = None
self.visualize_img_with_bbox(cur_vis_img_path, ori_img, dt_instances, ref_pts=all_ref_pts, gt_boxes=gt_boxes)
tracker_outputs = self.tr_tracker.update(dt_instances)
self.write_results(txt_path=os.path.join(self.predict_path, f'{self.seq_num}.txt'),
frame_id=(i + 1),
bbox_xyxy=tracker_outputs[:, :4],
identities=tracker_outputs[:, 5])
print("totally {} dts {} occlusion dts".format(total_dts, total_occlusion_dts))
if __name__ == '__main__':
parser = argparse.ArgumentParser('DETR training and evaluation script', parents=[get_args_parser()])
args = parser.parse_args()
if args.output_dir:
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
# load model and weights
detr, _, _ = build_model(args)
checkpoint = torch.load(args.resume, map_location='cpu')
detr = load_model(detr, args.resume)
detr.eval()
detr = detr.cuda()
# '''for MOT17 submit'''
sub_dir = 'DanceTrack/test'
seq_nums = os.listdir(os.path.join(args.mot_path, sub_dir))
for seq_num in seq_nums:
det = Detector(args, model=detr, seq_num=seq_num)
det.detect()