-
Notifications
You must be signed in to change notification settings - Fork 72
/
train.py
203 lines (172 loc) · 8.51 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import argparse
import os
import time
from datetime import datetime
from distutils.util import strtobool
import numpy as np
import torch
from torch.utils.data import DataLoader
from torchvision import transforms
from data_loader import (FileDataset,
RandomResizedCropWithAutoCenteringAndZeroPadding)
from torch.utils.data.distributed import DistributedSampler
from conr import CoNR
from tqdm import tqdm
def data_sampler(dataset, shuffle, distributed):
if distributed:
return torch.utils.data.distributed.DistributedSampler(dataset, shuffle=shuffle)
if shuffle:
return torch.utils.data.RandomSampler(dataset)
else:
return torch.utils.data.SequentialSampler(dataset)
def save_output(image_name, inputs_v, d_dir=".", crop=None):
import cv2
inputs_v = inputs_v.detach().squeeze()
input_np = torch.clamp(inputs_v*255, 0, 255).byte().cpu().numpy().transpose(
(1, 2, 0))
# cv2.setNumThreads(1)
out_render_scale = cv2.cvtColor(input_np, cv2.COLOR_RGBA2BGRA)
if crop is not None:
crop = crop.cpu().numpy()[0]
output_img = np.zeros((crop[0], crop[1], 4), dtype=np.uint8)
before_resize_scale = cv2.resize(
out_render_scale, (crop[5]-crop[4]+crop[8]+crop[9], crop[3]-crop[2]+crop[6]+crop[7]), interpolation=cv2.INTER_AREA) # w,h
output_img[crop[2]:crop[3], crop[4]:crop[5]] = before_resize_scale[crop[6]:before_resize_scale.shape[0] -
crop[7], crop[8]:before_resize_scale.shape[1]-crop[9]]
else:
output_img = out_render_scale
cv2.imwrite(d_dir+"/"+image_name.split(os.sep)[-1]+'.png',
output_img
)
def test():
source_names_list = []
for name in sorted(os.listdir(args.test_input_person_images)):
thissource = os.path.join(args.test_input_person_images, name)
if os.path.isfile(thissource):
source_names_list.append(thissource)
if os.path.isdir(thissource):
print("skipping empty folder :"+thissource)
image_names_list = []
for name in sorted(os.listdir(args.test_input_poses_images)):
thistarget = os.path.join(args.test_input_poses_images, name)
if os.path.isfile(thistarget):
image_names_list.append([thistarget, *source_names_list])
if os.path.isdir(thistarget):
print("skipping folder :"+thistarget)
print(image_names_list)
print("---building models")
conrmodel = CoNR(args)
conrmodel.load_model(path=args.test_checkpoint_dir)
conrmodel.dist()
infer(args, conrmodel, image_names_list)
def infer(args, humanflowmodel, image_names_list):
print("---test images: ", len(image_names_list))
test_salobj_dataset = FileDataset(image_names_list=image_names_list,
fg_img_lbl_transform=transforms.Compose([
RandomResizedCropWithAutoCenteringAndZeroPadding(
(args.dataloader_imgsize, args.dataloader_imgsize), scale=(1, 1), ratio=(1.0, 1.0), center_jitter=(0.0, 0.0)
)]),
shader_pose_use_gt_udp_test=not args.test_pose_use_parser_udp,
shader_target_use_gt_rgb_debug=False
)
sampler = data_sampler(test_salobj_dataset, shuffle=False,
distributed=args.distributed)
train_data = DataLoader(test_salobj_dataset,
batch_size=1,
shuffle=False,sampler=sampler,
num_workers=args.dataloaders)
# start testing
train_num = train_data.__len__()
time_stamp = time.time()
prev_frame_rgb = []
prev_frame_a = []
pbar = tqdm(range(train_num), ncols=100)
for i, data in enumerate(train_data):
data_time_interval = time.time() - time_stamp
time_stamp = time.time()
with torch.no_grad():
data["character_images"] = torch.cat(
[data["character_images"], *prev_frame_rgb], dim=1)
data["character_masks"] = torch.cat(
[data["character_masks"], *prev_frame_a], dim=1)
data = humanflowmodel.data_norm_image(data)
pred = humanflowmodel.model_step(data, training=False)
# remember to call humanflowmodel.reset_charactersheet() if you change character .
train_time_interval = time.time() - time_stamp
time_stamp = time.time()
if args.local_rank == 0:
pbar.set_description(f"Epoch {i}/{train_num}")
pbar.set_postfix({"data_time": data_time_interval, "train_time":train_time_interval})
pbar.update(1)
with torch.no_grad():
if args.test_output_video:
pred_img = pred["shader"]["y_weighted_warp_decoded_rgba"]
save_output(
str(int(data["imidx"].cpu().item())), pred_img, args.test_output_dir, crop=data["pose_crop"])
if args.test_output_udp:
pred_img = pred["shader"]["x_target_sudp_a"]
save_output(
"udp_"+str(int(data["imidx"].cpu().item())), pred_img, args.test_output_dir)
def build_args():
parser = argparse.ArgumentParser()
# distributed learning settings
parser.add_argument("--world_size", type=int, default=1,
help='world size')
parser.add_argument("--local_rank", type=int, default=0,
help='local_rank, DON\'T change it')
# model settings
parser.add_argument('--dataloader_imgsize', type=int, default=256,
help='Input image size of the model')
parser.add_argument('--batch_size', type=int, default=4,
help='minibatch size')
parser.add_argument('--model_name', default='model_result',
help='Name of the experiment')
parser.add_argument('--dataloaders', type=int, default=2,
help='Num of dataloaders')
parser.add_argument('--mode', default="test", choices=['train', 'test'],
help='Training mode or Testing mode')
# i/o settings
parser.add_argument('--test_input_person_images',
type=str, default="./character_sheet/",
help='Directory to input character sheets')
parser.add_argument('--test_input_poses_images', type=str,
default="./test_data/",
help='Directory to input UDP sequences or pose images')
parser.add_argument('--test_checkpoint_dir', type=str,
default='./weights/',
help='Directory to model weights')
parser.add_argument('--test_output_dir', type=str,
default="./results/",
help='Directory to output images')
# output content settings
parser.add_argument('--test_output_video', type=strtobool, default=True,
help='Whether to output the final result of CoNR, \
images will be output to test_output_dir while True.')
parser.add_argument('--test_output_udp', type=strtobool, default=False,
help='Whether to output UDP generated from UDP detector, \
this is meaningful ONLY when test_input_poses_images \
is not UDP sequences but pose images. Meanwhile, \
test_pose_use_parser_udp need to be True')
# UDP detector settings
parser.add_argument('--test_pose_use_parser_udp',
type=strtobool, default=False,
help='Whether to use UDP detector to generate UDP from pngs, \
pose input MUST be pose images instead of UDP sequences \
while True')
args = parser.parse_args()
args.distributed = (args.world_size > 1)
if args.local_rank == 0:
print("batch_size:", args.batch_size, flush=True)
if args.distributed:
if args.local_rank == 0:
print("world_size: ", args.world_size)
torch.distributed.init_process_group(
backend="nccl", init_method="env://", world_size=args.world_size)
torch.cuda.set_device(args.local_rank)
torch.backends.cudnn.benchmark = True
else:
args.local_rank = 0
return args
if __name__ == "__main__":
args = build_args()
test()