-
Notifications
You must be signed in to change notification settings - Fork 40
/
utils.py
107 lines (84 loc) · 3 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
import os
from os.path import join
import json
import pandas as pd
import time
import numpy as np
import torch
def str2bool(v):
# convert string to boolean type for argparser input
if isinstance(v, bool):
return v
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
def str_or_none(v):
# convert string to boolean type for argparser input
if v is None:
return None
if v.lower() == 'none':
return None
else:
return v
# helper functions for LDA arguments
def dic2name(dic):
return '_'.join(["{}-{}".format(k, dic[k]) for k in sorted(dic)])
def name2dic(s):
return {x.split('-')[0]:x.split('-')[1] for x in s.split('_')}
def get_valid_types(TYPENAME):
with open(join(os.environ['BASEPATH'], 'configs', 'types.json'), 'r') as typefile:
valid_types = json.load(typefile)[TYPENAME]
return valid_types
def df_index_gen(f, table=False):
# merge locator and dataset_id to genearte index table_id
f.loc[:,'table_id'] = f.apply(lambda x: '+'.join([x['locator'], x['dataset_id']]), axis = 1)
if not table:
f.loc[:,'field_id'] = f.apply(lambda x: x['field_id'].split(":")[-1], axis = 1)
f = f.drop(columns=['locator', 'dataset_id']).set_index('table_id')
return f
# load dataframe from pickle or create pickle file
def load_tmp_df(load_path, tmp_path, name, table=False):
start = time.time()
pkl_file = join(tmp_path, "{}.pkl".format(name))
if os.path.exists(pkl_file):
print("{} pickle file found, loading...".format(pkl_file))
df = pd.read_pickle(pkl_file)
else:
#process and save pkl
print("{} pickle file not found, creating...".format(pkl_file))
df = pd.read_csv(join(load_path, "{}.csv".format(name)))
df = df_index_gen(df, table)
df.to_pickle(pkl_file)
print("{} Load complete. Time {}".format(name, time.time()-start))
return df
def logSumExpTensor(vec):
# vec -> 16, tag_size
batch_size = vec.size()[0]
vec = vec.view(batch_size, -1)
max_score = torch.max(vec, 1)[0]
max_score_broadcast = max_score.view(-1, 1).expand(-1, vec.size()[1])
return max_score + \
torch.log(torch.sum(torch.exp(vec - max_score_broadcast), 1))
def logNormalizeTensor(a):
denom = logSumExpTensor(a)
if len(a.size())==2:
denom = denom.view(-1, 1).expand(-1, a.size()[1])
elif len(a.size())==3:
denom = denom.view(a.size()[0], 1, 1).expand(-1, a.size()[1], a.size()[2])
return (a-denom)
def logNormalize(a):
denom = np.logaddexp.reduce(a, 1)
return (a.transpose()- denom).transpose()
def logDot(a, b):
# numeric stable way of calculating log (e^a, e^b)
max_a = np.amax(a)
max_b = np.amax(b)
C = np.dot(np.exp(a - max_a), np.exp(b - max_b))
np.log(C, out=C)
# else:
# np.log(C + 1e-300, out=C)
C += max_a + max_b
return C