Skip to content

Latest commit

 

History

History
222 lines (175 loc) · 12.5 KB

README.md

File metadata and controls

222 lines (175 loc) · 12.5 KB

TIMIT Speaker Identification

Speaker Identification in TIMIT dataset.

There are several experimental results under various settings. These results may give insight for other datasets.

This is only a document. No Coding.

Basis Step

  1. load waveforms and extract spectogram,
  2. define deep convolutional network and optimizer,
  3. prepare trainset and testset,
  4. train network.

Note that iterate model for improving.

Main Conclusinon

Note: just for TIMIT-like dataset that is clean and ideal small ones.

  1. training on short-time utterances (1s) benefit results and improve 80+% to 90+%.

  2. decreasing or increasing amplitude of signals within $\pm 0.2$ benefit results and improve 80+% to 95+%.

    • This operation is inspired by sincnet settings.
    • It can be replaced by dB-psd plused 110.
  3. SGD is more stable than Adam.

  4. well-investigated netowrk is with 3 conv2d and 512-512 hidden units.

  5. power spectral density in dB $10\log_{10}(\text{spec})$ gives best inputs.

  6. The range of feature of inputs contributes performance, and results showed that $\text{magnitude}\in[0, 60]$, $\text{psd in dB}\in[-60, 40]$, and $\text{psd in dB plused 110 of normalized waveform}\in[-40, 60]$ benefit the learning process.

  7. Hypothesis (verified): seperate distribution of values of inputs may harm performance, compared to dense/continous distribution.

Results Overview

1. On TIMIT_TRAIN.txt (5 utterances) and TIMIT_TEST.txt (3 utterances) 462 speaker

ID file top 1 acc top 5 acc train loss note
1 462-amp0.2 0.965 0.993 0.051 decrease or increase 0.2 amplitude of signals
2 462-amp0.2-normalize 0.731 0.914 0.094 ID 1 - then normalize it
3 462-normalize-5_lr 0.780 0.935 0.173 normalize it with decreasing learning rate at every 5 epochs

2. On iden_train.txt (8 utterances) and iden_test.txt (2 utterances) 630 speakers

ID file top 1 acc top 5 acc train loss note
1 630-amp0.2 0.995 0.999 0.019 decrease or increase 0.2 amplitude of signals
2 630-amp0.2-small 0.993 0.999 0.033 ID 1 - decrease network's size
3 630-amp0.2-tiny 0.984 0.998 0.044 ID 1 - decrease network's size
4 630-amp0.2-tiny-adam 0.971 0.994 0.053 ID 3 - use Adam optimizer
5 630-amp0.2-footnote-adam 0.983 1 0.01 ID 3 - reduce the size and the stride of conv2d
6$^\star$ 630-amp0.2-footnote-sgd 0.991 0.998 0.065 ID 5 - replace optimizer SGD
7$^\star$ 630-amp0.2-onesided 0.99 1 0.062 ID 6 - only one side spectrum

3. No amplify $\pm 0.2$ On iden_train.txt (8 utterances) and iden_test.txt (2 utterances) 630 speakers

ID file top 1 acc top 5 acc train loss note
1 None 0.8278 0.9429 0.02518 3s + dither + preemphasis (30 epochs)
2 None 0.8579 0.9532 0.0252 3s + preemphasis (30 epochs)
3 None 0.8278 0.9468 0.02813 3s (30 epochs)
4 None 0.9381 0.9865 0.06056 1s + preemphasis (100 epochs)
5 None 0.8746 0.9706 0.04939 0.5s + preemphasis (200 epochs)
6$^\star$ 630-onesided-psd-db-plus110-lr0.01 0.994 0.999 0.0274 1s + s1 + psd in dB and plus 110 using SGD with learning rate 0.01
7$^\star$ 630-onesided-s1-psd-dB-plus110-lr0.01 0.997 1 0.0260 ID 6 - verify again (run again)

4. Spectrum selection 630 speakers

ID file top 1 acc top 5 acc train loss note
1 630-amp0.2-onesided-mag 0.7135 0.9063 3.283 magnitude: using magnitude as features of inputs, $\text{magnitude}\in[0, 80]$
2 630-amp0.2-onesided-mag-lr0.01 0.9921 1 0.0664 ID 1 - increase initial learning rate 0.01 in SGD
3 630-amp0.2-onesided-psd 0.180 0.431 4.908 psd: using psd as features of inputs, generally, $\text{psd} = \text{magnitude}^2, \text{psd}\in[0,8000]$
4 630-amp0.2-onesided-psd-lr0.01 0.473 0.727 0.541 ID 3 - increase initial learning rate 0.01 in SGD
5 630-amp0.2-onesided-psd^0.5-lr0.01 0.989 0.998 0.0505 ID 3 - $\sqrt{\text{spec}}$
6$^\star$ 630-amp0.2-onesided-psd-dB-lr0.01 0.995 1 0.0387 ID 3 - (fastest in convergence: before 50 epoches) $10\log_{10}(\text{spec})$
7 630-amp0.2-onesided-psd-norm1-lr0.01 0.183 0.364 0.626 ID 3 - normalize $\text{spectrum}\in[0,1]$ or so

5. Normalize waveform by $2^{15}$ ($32768$ or int16) 630 speakers

ID file top 1 acc top 5 acc train loss note
1 630-amp0.2-onesided-s1 0.00159 0.0119 3.287 baseline
2 630-amp0.2-onesided-s1log10 0.985 0.998 0.4034 ID 1 - $\log_{10}(spec)$
3 630-amp0.2-onesided-s1log10-RMSprop 0.982 0.999 0.000191 ID 1 - (unstable) replace SGD to RMSprop
4 630-amp0.2-onesided-s1log10-psd-dB-lr0.01 0.994 1 0.0230 ID 1 - (a bit unstable) using psd in dB as inputs and SGD starting with 0.01 learning rate
5$^\star$ 630-amp0.2-onesided-s1-psd-dB-plus110-lr0.01 0.995 0.999 0.0348 ID 1 - (Selected: fastest in convergence: before 50 epoches) plus psd in dB 110 for rearrange spectral values in $[-50, 50]$ or so
6 630-amp0.2-onesided-s1-psd-dB-plus110-norm1-lr0.01 0.997 0.999 0.0446 ID 1 - (comparative to Selected) normalize $\text{spec} \in [-1, 1]$ or so
7 630-amp0.2-onesided-s1-psd-dB-plus110-norm1-lr0.01 0.996 0.999 0.0316 ID 1 - (comparative to Selected) normalize $\text{spec} \in [-8000, 8000]$ or so

Core method

1. Data Loader

class IdentificationDataset(Dataset):
    
    def __init__(self, path, lst, transform=None):
        data_path = os.path.join(path, lst)
        self.dataset = pd.read_table(data_path, sep=' ', header=None, 
                                     names=['name', 'path']).reset_index(drop=True).values
        self.speaker_id = {name: i for i, name in enumerate(set(self.dataset[:,0]))}
        self.path = path
        self.train = True if 'train' in data_path.lower() else False
        self.transform = transform
    
    def load_wav(self, audio_path):
        # read .wav
        samples, rate = sf.read(audio_path, dtype='int16')
        samples = samples  / 32768.0
        ## parameters
        window = 'hamming'
        # window width and step size
        Tw = 25 # ms
        Ts = 10 # ms
        # frame duration (samples)
        Nw = int(rate * Tw * 1e-3)
        Ns = int(rate * (Tw - Ts) * 1e-3)
        # overlapped duration (samples)
        # 2 ** to the next pow of 2 of (Nw - 1)
        nfft = 2 ** (Nw - 1).bit_length()
        
        if self.train:
            ''' segment selection and signal amplification 
            '''
            segment_len = int(1.0 * rate)
            if len(samples) <= segment_len:
                samples = np.pad(samples, (0, segment_len + 1 - len(samples)))
            upper_bound = len(samples) - segment_len
            start = np.random.randint(0, upper_bound)
            end = start + segment_len
            samples = samples[start:end]# * np.random.uniform(0.8, 1.2)
        
        # spectogram
        _, _, spec = signal.spectrogram(samples, rate, window, Nw, Ns, nfft, 
                                        mode='psd', return_onesided=True)
        # for numeric consideration
        spec = 10.0 * np.log10(spec) # dB
        spec += 110.0 # plus 110 for psd of normalize waveform 
        
        if self.transform:
            spec = self.transform(spec)
        return spec, rate
    
    def __len__(self):
        return len(self.dataset)
    
    def __getitem__(self, idx):
        # path
        track_path = self.dataset[idx] # name, path
        audio_path = os.path.join(self.path, track_path[1])
        # read .wav
        spec, _ = self.load_wav(audio_path)
        label = self.speaker_id[track_path[0]]
        return {'label':label, 'spec':spec}
    
class ToTensor(object):
    """Convert spectogram to Tensor."""
    def __call__(self, spec):
        F, T = spec.shape
        # now specs are of size (Freq, Time) and 2D but has to be 3D (channel dim)
        spec = spec.reshape(1, F, T)
        # make the ndarray to be of a proper type (was float64)
        spec = spec.astype(np.float32)
        return torch.from_numpy(spec)

2. Model Architecture

class VoiceNet(nn.Module):
	"""footnote: 3 convolutional layers
	"""
    def __init__(self, num_classes=2):
        super(VoiceNet, self).__init__()
        
        self.conv1 = nn.Conv2d(in_channels=1, out_channels=60, kernel_size=7, stride=2, padding=1)
        self.conv2 = nn.Conv2d(in_channels=60, out_channels=60, kernel_size=5, stride=2, padding=1)
        
        self.bn1 = nn.BatchNorm2d(num_features=60)
        self.bn2 = nn.BatchNorm2d(num_features=60)
        self.bn3 = nn.BatchNorm2d(num_features=512)
        self.bn5 = nn.BatchNorm1d(num_features=512)
        
        self.relu = nn.ReLU()
        self.softmax = nn.Softmax()
        
        self.mpool1 = nn.MaxPool2d(kernel_size=3, stride=2)
        
        # Conv2d with weights of size (H, 1) is identical to FC with H weights
        self.conv3 = nn.Conv2d(in_channels=60, out_channels=512, kernel_size=(31, 1))
        self.fc5 = nn.Linear(in_features=512, out_features=512)
        self.fc6 = nn.Linear(in_features=512, out_features=num_classes)
        
    def forward(self, x):
        B, C, H, W = x.size()
        x = self.relu(self.bn1(self.conv1(x)))
        x = self.mpool1(x)
        x = self.relu(self.bn2(self.conv2(x)))
        x = self.relu(self.bn3(self.conv3(x)))
        
        _, _, _, W = x.size()
        self.apool4 = nn.AvgPool2d(kernel_size=(1, W)) # average pooling over time
        x = self.apool4(x)
        
        x = x.flatten(start_dim=1)
        x = self.relu(self.bn5(self.fc5(x)))
        x = self.fc6(x)
        
        # during training, there's no need for SoftMax because CELoss calculates it
        if self.training:
            return x
        else:
            return self.softmax(x)

Remarks

Welcome discussion.

Free for questions.