forked from damaggu/TADP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_tadp.py
372 lines (315 loc) · 16.6 KB
/
train_tadp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
import argparse
import os
import torch
import lightning.pytorch as pl
import yaml
from torch.utils.data import DataLoader
from torch.utils.data import ConcatDataset
from TADP.tadp_seg import TADPSeg
# from TADP.tadp_objdet import TADPObj
from datasets.VOCDataset import VOCDataset
from datasets.datamodules import PascalVOCDataModule
import numpy as np
import datetime
from datasets.VOC_config import cfg as voc_cfg
from TADP.utils.detection_utils import voc_classes, empty_collate
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--task", type=str, default="segmentation") # options are segmentation, detection
parser.add_argument("--val_dataset_name", default="pascal", type=str)
parser.add_argument("--cross_domain_target", default="watercolor", type=str)
parser.add_argument('--cross_blip_caption_path', type=str, default='blip_captions/watercolor_captions.json',
help='path to cross blip captions')
parser.add_argument('--dreambooth_checkpoint', type=str, default=None, help='path to dreambooth checkpoint')
parser.add_argument('--textual_inversion_token_path', type=str, default=None,
help='path to textual inversion token path')
parser.add_argument("--train_dataset_name", default="pascal", type=str)
parser.add_argument("--exp_name", type=str)
parser.add_argument("--num_workers", type=int, default=8)
parser.add_argument("--log_freq", type=int, default=100)
parser.add_argument("--log_every_n_steps", type=int, default=1)
parser.add_argument("--log_model_every_n_epochs", type=int, default=-1)
parser.add_argument("--check_val_every_n_epoch", type=int, default=1)
parser.add_argument("--wandb_group", type=str, default="FT_baseline_runs")
# debugging presets
parser.add_argument("--debug", action='store_true', default=False)
parser.add_argument("--val_debug", action='store_true', default=False)
parser.add_argument("--wandb_debug", action='store_true', default=False)
# test remote machine if it is working without wasting time downloading datasets
parser.add_argument("--test_machine", action='store_true', default=False)
# experiment parameters
parser.add_argument("--model_name", type=str, default="DeeplabV3Plus")
parser.add_argument("--from_scratch", action='store_true', default=False)
parser.add_argument("--max_epochs", type=int, default=80)
parser.add_argument("--batch_size", type=int, default=16)
parser.add_argument("--num_gpus", type=int, default=1)
parser.add_argument("--val_batch_size", type=int, default=16)
parser.add_argument("--seed", type=int, default=42)
parser.add_argument("--checkpoint", type=str, default=None)
parser.add_argument('--eval_dataset', type=str, nargs='+', default=['pascal'])
parser.add_argument('--optimizer_config_preset', type=int, default=0)
parser.add_argument('--strategy', type=str, default='')
parser.add_argument('--ckpt_path', type=str, default='')
parser.add_argument('--freeze_backbone', type=int, default=0)
parser.add_argument('--freeze_batchnorm', type=int, default=0)
parser.add_argument("--accum_grad_batches", type=int, default=1)
parser.add_argument("--freeze_text_adapter", type=int, default=1)
parser.add_argument('--train_dataset', type=str, nargs='+', default=['VOC2012_ext'])
parser.add_argument('--train_max_samples', type=int, default=None)
# TADP specific parameters
parser.add_argument('--text_conditioning', type=str, default='class_emb')
parser.add_argument('--min_blip', type=int, default=0)
parser.add_argument('--task_inversion_lr', type=float, default=0.002)
parser.add_argument('--use_scaled_encode', action='store_true', default=False)
parser.add_argument('--append_self_attention', action='store_true', default=False)
parser.add_argument('--use_decoder_features', action='store_true', default=False)
parser.add_argument('--use_text_adapter', action='store_true', default=False)
parser.add_argument('--cond_stage_trainable', action='store_true', default=False)
parser.add_argument('--blip_caption_path', type=str, default=None)
parser.add_argument('--no_attn', action='store_true', default=False)
parser.add_argument('--use_only_attn', action='store_true', default=False)
parser.add_argument('--present_class_embeds_only', action='store_true', default=False)
parser.add_argument('--trainer_ckpt_path', type=str, default=None)
parser.add_argument('--save_checkpoint_path', type=str, default='')
parser.add_argument('--train_debug', action='store_true', default=False)
args = parser.parse_args()
model_name = args.model_name
pretrained = not args.from_scratch
max_epochs = args.max_epochs
batch_size = args.batch_size
val_batch_size = args.val_batch_size
num_workers = args.num_workers
log_freq = args.log_freq
log_every_n_steps = args.log_every_n_steps
wandb_group = args.wandb_group
wandb_name = args.exp_name
checkpoint = args.checkpoint
strategy = args.strategy
accum_grad_batches = args.accum_grad_batches
freeze_text_adapter = args.freeze_text_adapter
log_model_every_n_epochs = args.log_model_every_n_epochs
blip_caption_path = args.blip_caption_path # depends on dataset
use_decoder_features = args.use_decoder_features
cond_stage_trainable = args.cond_stage_trainable
save_checkpoint_path = args.save_checkpoint_path
save_topk = 1
save_last = True
limit_train_batches = None
limit_val_batches = None
if args.debug:
max_epochs = 4
os.environ["WANDB_MODE"] = "dryrun"
num_workers = 0
batch_size = 16 if 'TADP' not in args.model else batch_size
log_freq = 1
save_last = False
save_topk = 0
if args.wandb_debug:
num_workers = 0
batch_size = 16 if 'TADP' not in args.model else batch_size
limit_val_batches = 2
limit_train_batches = 2
wandb_group = "wandb_debugging"
wandb_name = f"dummy_{datetime.datetime.now().__str__()}"
save_last = False
save_topk = 0
if args.val_debug:
limit_val_batches = 2
limit_train_batches = 2
os.environ["WANDB_MODE"] = "dryrun"
if args.test_machine:
args.train_dataset = ['dummy_data']
args.eval_dataset = ['dummy_data']
os.environ["WANDB_MODE"] = "dryrun"
pl.seed_everything(args.seed)
if args.task == 'segmentation':
train_datasets = []
if 'VOC2012_ext' in args.train_dataset:
print('Using VOC2012_ext dataset')
voc_train_dataset = VOCDataset('./', 'VOC2012', voc_cfg, 'train', True)
train_datasets.append(voc_train_dataset)
if blip_caption_path is None:
blip_caption_path = f'blip_captions/pascal_captions_min={args.min_blip}_max=77.json'
val_loaders = []
for v_dset in args.eval_dataset:
if v_dset == 'pascal':
val_dataset = VOCDataset('./', 'VOC2012', voc_cfg, 'val', False)
val_loader = DataLoader(val_dataset, batch_size=val_batch_size, shuffle=False, num_workers=num_workers,
drop_last=True)
val_loaders.append(val_loader)
class_names = train_datasets[0].classes
train_dataset = ConcatDataset(train_datasets)
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=num_workers,
drop_last=True)
elif args.task == 'detection':
from torchvision.datasets import VOCDetection
base_path = './data/'
dl = True
pascal_2012_trainval = VOCDetection(os.path.join(base_path, "VOCdevkit/VOC2012"), year='2012',
image_set='trainval',
download=dl)
pascal_2007_trainval = VOCDetection(os.path.join(base_path, "VOCdevkit/VOC2007"), year='2007',
image_set='trainval',
download=dl)
# pascal_2012_val = VOCDetection(os.path.join(base_path, "VOCdevkit/VOC2012"), year='2012', image_set='val',
# download=dl)
pascal_2007_test = VOCDetection(os.path.join(base_path, "VOCdevkit/VOC2007"), year='2007', image_set='test',
download=dl)
train_datasets = ConcatDataset([pascal_2012_trainval, pascal_2007_trainval])
pascal_val_dataset = pascal_2007_test
val_loaders = []
class_names = voc_classes
train_loader = DataLoader(train_datasets, batch_size=batch_size, shuffle=True, num_workers=num_workers,
drop_last=True, collate_fn=empty_collate)
else:
raise ValueError(f'Invalid task: {args.task}')
assert len(train_datasets) > 0, 'No valid train dataset specified'
# for tdi, td in enumerate(train_datasets):
# print(f'Train dataset {args.train_dataset[tdi]}: {len(td)} samples')
class_embedding_path = './data/pascal_class_embeddings.pth'
cfg = yaml.load(open("./sd_tune.yaml", "r"), Loader=yaml.FullLoader)
cfg["annotator"]["type"] = "ground_truth"
cfg["stable_diffusion"]["use_diffusion"] = True
cfg["max_epochs"] = max_epochs
cfg["dataset_len"] = len(train_loader)
cfg["freeze_text_adapter"] = freeze_text_adapter
if args.no_attn and args.use_only_attn:
raise ValueError('Cannot use both no_attn and use_only_attn')
model_kwargs = {}
cfg['text_conditioning'] = args.text_conditioning
cfg['blip_caption_path'] = blip_caption_path
cfg['use_scaled_encode'] = args.use_scaled_encode
cfg['class_names'] = class_names
cfg['append_self_attention'] = args.append_self_attention
cfg['use_text_adapter'] = args.use_text_adapter
cfg['cond_stage_trainable'] = cond_stage_trainable
if args.append_self_attention:
model_kwargs['unet_config'] = {'attn_selector': 'up_cross+down_cross-up_self+down_self'}
model_kwargs['unet_config'] = {'use_attn': not args.no_attn} # default for use_attn ends up true
cfg['use_attn'] = not args.no_attn
cfg['use_only_attn'] = args.use_only_attn
cfg['use_decoder_features'] = use_decoder_features
cfg['use_token_embeds'] = False
cfg['present_class_embeds_only'] = args.present_class_embeds_only
cfg['dreambooth_checkpoint'] = args.dreambooth_checkpoint
cfg['textual_inversion_token_path'] = args.textual_inversion_token_path
cfg['dataset_len'] = len(train_datasets)
cfg['val_dataset_name'] = args.val_dataset_name
cfg['cross_blip_caption_path'] = args.cross_blip_caption_path
if args.task == 'segmentation':
model = TADPSeg(class_names=VOCDataset.classes,
ignore_index=VOCDataset.ignore_index,
visualizer_kwargs=VOCDataset.visualizer_kwargs,
num_val_dataloaders=len(val_loaders),
class_embedding_path=class_embedding_path,
cfg=cfg,
**model_kwargs
)
elif args.task == 'detection':
from datasets.VOCDataset import classes
model = TADPObj(class_embedding_path="./data/pascal_class_embeddings.pth", cfg=cfg, class_names=classes,
freeze_backbone=args.freeze_backbone)
if args.val_dataset_name == 'cross':
model.dataset_name = args.cross_domain_target
else:
model.dataset_name = args.val_dataset_name
model.init_evaluator()
cross_domain_train = PascalVOCDataModule(
os.path.join(base_path, "cross-domain-detection/datasets/" + args.cross_domain_target),
"train", classes)
cross_domain_val = PascalVOCDataModule(
os.path.join(base_path, "cross-domain-detection/datasets/" + args.cross_domain_target),
"test", classes)
if args.train_dataset_name == 'pascal':
pass # already pascal
elif args.train_dataset_name == 'cross':
train_datasets = cross_domain_train
else:
raise ValueError('train dataset name not recognized')
if args.train_debug:
train_datasets = torch.utils.data.Subset(train_datasets, range(100))
cross_domain_val = torch.utils.data.Subset(cross_domain_val, range(100))
if args.val_dataset_name == 'pascal':
val_loader = DataLoader(pascal_val_dataset, batch_size=val_batch_size, shuffle=False,
num_workers=num_workers,
drop_last=True, collate_fn=empty_collate)
elif args.val_dataset_name == 'cross':
val_loader = DataLoader(cross_domain_val, batch_size=val_batch_size, shuffle=False,
num_workers=num_workers,
drop_last=True, collate_fn=empty_collate)
else:
raise ValueError('val dataset name not recognized')
val_loaders.append(val_loader)
train_loader = DataLoader(train_datasets, batch_size=batch_size, shuffle=True, num_workers=num_workers,
drop_last=True, collate_fn=empty_collate)
if checkpoint is not None and pretrained:
try:
state_dict = torch.load(checkpoint)["state_dict"]
# making older state dicts compatible with current model
if list(state_dict.keys())[0] != list(model.state_dict().keys())[0]:
print('Loading pretrained model with different key names')
# replace each key in state_dict with the corresponding key in model.state_dict()
state_dict = {list(model.state_dict().keys())[i]: list(state_dict.values())[i] for i in
range(len(state_dict))}
model.load_state_dict(state_dict, strict=True)
except KeyError:
model.load_state_dict(torch.load(checkpoint))
checkpoint_callbacks = []
for i in range(len(val_loaders)):
checkpoint_callback = pl.callbacks.ModelCheckpoint(
monitor=f'val_{i}_loss_epoch/dataloader_idx_{i}' if model_name == 'DeeplabV3Plus' else f'val_{i}_loss',
dirpath=f'./checkpoints/{args.exp_name}/',
filename=f'model_checkpoint_{args.exp_name}',
# save_top_k=save_topk, # Save top1 Why?? this is 40GB of checkpoints -->> # Save all checkpoints.
save_top_k=-1 if log_model_every_n_epochs > 0 else save_topk,
mode='min', # Mode for comparing the monitored metric
save_last=save_last,
every_n_epochs=log_model_every_n_epochs if log_model_every_n_epochs > 0 else None,
)
checkpoint_callbacks.append(checkpoint_callback)
lr_callback = pl.callbacks.LearningRateMonitor(logging_interval='epoch')
callbacks = [lr_callback] + checkpoint_callbacks
logger = pl.loggers.WandbLogger(
name=wandb_name or "segmentation_test, model={}".format(model_name) + "usingDecoderFeatures={}".format(
use_decoder_features),
group=wandb_group or "markusShit",
project="madman",
log_model="all",
entity="vision-lab",
)
# watch model
logger.watch(model, log="all", log_freq=log_freq)
print("batch_size: ", batch_size)
trainer = pl.Trainer(
accelerator="gpu",
devices=args.num_gpus,
strategy=strategy if strategy != '' else 'auto', # check somehow ddp is using more gpu memory than auto
logger=logger,
max_epochs=max_epochs,
log_every_n_steps=log_every_n_steps,
callbacks=callbacks,
limit_train_batches=limit_train_batches, # None unless --wandb_debug or --val_debug flag is set
limit_val_batches=limit_val_batches, # None unless --wandb_debug or --val_debug flag is set
check_val_every_n_epoch=args.check_val_every_n_epoch, # None unless --wandb_debug flag is set
sync_batchnorm=True if args.num_gpus > 1 else False,
accumulate_grad_batches=accum_grad_batches,
)
if trainer.global_rank == 0:
logger.experiment.config.update(args)
if not args.debug or args.val_debug:
trainer.validate(model, dataloaders=val_loaders)
trainer.fit(
model,
train_dataloaders=train_loader,
val_dataloaders=val_loaders,
ckpt_path=args.trainer_ckpt_path,
)
# save the model
if save_checkpoint_path != '':
save_model_name = f'{args.exp_name}.ckpt'
# results paths
if not os.path.exists(save_checkpoint_path):
os.makedirs(save_checkpoint_path)
torch.save(model.state_dict(), save_checkpoint_path + save_model_name)
if __name__ == "__main__":
main()