-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrec_blue_plate_res45_train_v2.0.yml
99 lines (91 loc) · 2.22 KB
/
rec_blue_plate_res45_train_v2.0.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
Global:
use_gpu: true
epoch_num: 500
log_smooth_window: 20
print_batch_step: 10
save_model_dir: ./output/rec_res45_blue_plate_125
save_epoch_step: 10
# evaluation is run every 5000 iterations after the 4000th iteration
eval_batch_step: [0, 100]
cal_metric_during_train: True
pretrained_model: ./output/rec_res45_blue_plate_125/best_accuracy
checkpoints:
save_inference_dir: ./output/rec_res45_blue_plate_125
use_visualdl: False
infer_img: test_data/data_img/
# for data or label process
character_dict_path: ppocr/utils/plate.txt
max_text_length: 8
infer_mode: False
use_space_char: False
save_res_path: ./output/rec_res45_blue_plate_125.txt
Optimizer:
name: Adam
beta1: 0.9
beta2: 0.999
lr:
name: Cosine
learning_rate: 0.001
warmup_epoch: 5
regularizer:
name: 'L2'
factor: 0.00001
Architecture:
model_type: rec
algorithm: CRNN
Transform:
Backbone:
name: ResNet45
Neck:
name: SequenceEncoder
encoder_type: rnn
hidden_size: 96
Head:
name: CTCHead
fc_decay: 0.00001
Loss:
name: CTCLoss
PostProcess:
name: CTCLabelDecode
Metric:
name: RecMetric
main_indicator: acc
Train:
dataset:
name: SimpleDataSet
data_dir: ./train_data/
label_file_list: ["./train_data/train.txt"]
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- RecAug:
- CTCLabelEncode: # Class handling label
- RecResizeImg:
image_shape: [3, 32, 100]
- KeepKeys:
keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order
loader:
shuffle: True
batch_size_per_card: 256
drop_last: True
num_workers: 0
Eval:
dataset:
name: SimpleDataSet
data_dir: ./test_data
label_file_list: ["./test_data/train.txt"]
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- CTCLabelEncode: # Class handling label
- RecResizeImg:
image_shape: [3, 32, 100]
- KeepKeys:
keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order
loader:
shuffle: False
drop_last: False
batch_size_per_card: 256
num_workers: 0