diff --git a/.github/workflows/linux.yml b/.github/workflows/linux.yml index 1915193bac4..e628fb59622 100644 --- a/.github/workflows/linux.yml +++ b/.github/workflows/linux.yml @@ -31,7 +31,7 @@ jobs: runs-on: [ubuntu-latest] steps: - - uses: actions/checkout@v3 + - uses: actions/checkout@v4 # install oneapi components from apt repository based on # oneapi-ci/scripts/setup_apt_repo_linux.sh @@ -84,7 +84,7 @@ jobs: runs-on: [ubuntu-latest] steps: - - uses: actions/checkout@v3 + - uses: actions/checkout@v4 - name: install openmpi run: | sudo apt-get update diff --git a/.github/workflows/osx.yml b/.github/workflows/osx.yml index 0da2345df55..4615f1d86aa 100644 --- a/.github/workflows/osx.yml +++ b/.github/workflows/osx.yml @@ -46,7 +46,7 @@ jobs: shell: bash steps: - - uses: actions/checkout@v3 + - uses: actions/checkout@v4 # install oneapi components from web installer based on # oneapi-ci/scripts/install_macos.sh @@ -141,7 +141,7 @@ jobs: shell: bash steps: - - uses: actions/checkout@v3 + - uses: actions/checkout@v4 - name: install openmpi run: | brew install open-mpi diff --git a/.github/workflows/windows.yml b/.github/workflows/windows.yml index c83473448d5..5a7452f4126 100644 --- a/.github/workflows/windows.yml +++ b/.github/workflows/windows.yml @@ -44,7 +44,7 @@ jobs: shell: cmd steps: - - uses: actions/checkout@v3 + - uses: actions/checkout@v4 # install oneapi components from web installer based on # oneapi-ci/scripts/install_windows.bat diff --git a/Manuals/FDS_User_Guide/FDS_User_Guide.tex b/Manuals/FDS_User_Guide/FDS_User_Guide.tex index 7b57ec24c09..0b1e84a9f5f 100644 --- a/Manuals/FDS_User_Guide/FDS_User_Guide.tex +++ b/Manuals/FDS_User_Guide/FDS_User_Guide.tex @@ -9210,7 +9210,7 @@ \subsection{Spatially-Integrated Outputs} \begin{lstlisting} &DEVC XB=..., QUANTITY='TEMPERATURE', ID='maxT', SPATIAL_STATISTIC='MAX' / \end{lstlisting} -causes FDS to write out the maximum gas phase temperature over the volume bounded by {\ct XB}. Other {\ct SPATIAL\_STATISTIC}'s are discussed below. Some are appropriate for gas phase output quantities, some for solid phase, and some for both. Note that if {\ct XB} is used for a point device without a {\ct SPATIAL\_STATISTIC}, then FDS will define {\ct XYZ} to be the center of the volume defined by {\ct XB}. +causes FDS to write out the maximum gas phase temperature over the volume bounded by {\ct XB}. Other {\ct SPATIAL\_STATISTIC}'s are discussed below. Some are appropriate for gas phase output quantities, some for solid phase, and some for both. Note that if {\ct XB} is used for a point device without a {\ct SPATIAL\_STATISTIC}, then FDS will define {\ct XYZ} to be the center of the volume defined by {\ct XB}. A {\ct SPATIAL\_STATISTIC} can only be used for a gas phase {\ct QUANTITY} in Table~\ref{info:gasoutputquantities} with both D and S in the file type column or for a solid phase {\ct QUANTITY} in Table~\ref{info:solidoutputquantities} with both D and B in the file type column. For solid phase output quantities, like heat fluxes and surface temperatures, the specification of a {\ct SURF\_ID} along with the appropriate statistic limits the calculation to only those surfaces. You can further limit the search by using the sextuplet of coordinates {\ct XB} to force FDS to only compute statistics for surface cells within the given volume. Be careful to account for the fact that the solid surface might shift to conform to the underlying numerical grid. Note that you do not (and should not) specify an orientation via the parameter {\ct IOR} when using a spatial statistic. {\ct IOR} is only needed to find a specific point on the solid surface. diff --git a/Validation/NIST_Polymers/FDS_Input_Files/NIST_Gasification_Test_R3.fds b/Validation/NIST_Polymers/FDS_Input_Files/NIST_Gasification_Test_R3.fds index 43471014e20..4d8f2a9e92b 100644 --- a/Validation/NIST_Polymers/FDS_Input_Files/NIST_Gasification_Test_R3.fds +++ b/Validation/NIST_Polymers/FDS_Input_Files/NIST_Gasification_Test_R3.fds @@ -1,48 +1,65 @@ -&HEAD CHID='NIST_Gasification_Test_R3', TITLE='Black PMMA at 50 kW/m2 in Gasification Apparatus' / +&HEAD CHID='NIST_Gasification_Test_R3', TITLE='Black PMMA at 50 kW/m2 in Gasification Apparatus Test R3' / -&MESH IJK=3,3,4, XB=-0.15,0.15,-0.15,0.15,0.0,0.4 / +&MESH XB=0,1,0,1,0,1,IJK=5,1,4/ -&TIME T_END=500., WALL_INCREMENT=1, DT=0.1 / +&MISC SOLID_PHASE_ONLY=T,TMPA=20.45/ +&VENT XB=0.0,0.2,0,1,0,0,SURF_ID='SAMPLE1'/ -&MISC Y_O2_INFTY=0.001 / +&TIME T_END=500,DT=0.01/ -&MATL ID = 'Kaowool PM Insulation' - DENSITY = 256. - SPECIFIC_HEAT = 1.07 - CONDUCTIVITY_RAMP = 'k_kaowool' / +&CATF OTHER_FILES='pmma_properties.txt' / -&RAMP ID='k_kaowool', T= 260., F=0.0576 / -&RAMP ID='k_kaowool', T= 538., F=0.085 / -&RAMP ID='k_kaowool', T= 816., F=0.125 / -&RAMP ID='k_kaowool', T=1093., F=0.183 / +&MATL ID='KPM', + DENSITY = 256., + SPECIFIC_HEAT_RAMP = 'KPM_CP', + CONDUCTIVITY_RAMP = 'KPM_K', + EMISSIVITY = 0.92/ -&CATF OTHER_FILES='pmma_properties.txt' / +&MATL ID='AL', + DENSITY = 2700., + SPECIFIC_HEAT = 0.89, + CONDUCTIVITY = 100., + EMISSIVITY = 0.3/ + +! The PMMA was bonded to the the Kaowoll PM (KPM) using a combustible adhesive. +! The mass of adhesive was treated as if it were PMMA and the sample thickess adjusted accordingly. +&SURF ID='SAMPLE1', + HEAT_TRANSFER_COEFFICIENT=13., + COLOR='WHITE', + MATL_ID='BLACK PMMA','KPM','AL', + THICKNESS=0.006091,0.02852,0.00635, + STRETCH_FACTOR=1,1,1, + EXTERNAL_FLUX=50/ -&SURF ID='PMMA SLAB' - COLOR='BLACK' - STRETCH_FACTOR=1. - HEAT_TRANSFER_COEFFICIENT=13. - EXTERNAL_FLUX=50 - BACKING='INSULATED' - MATL_ID='BLACK PMMA','Kaowool PM Insulation' - THICKNESS=0.0059,0.0254 / +&RAMP ID='KPM_CP', T=26.85, F=0.7653/ +&RAMP ID='KPM_CP', T=226.85, F=1.0211/ +&RAMP ID='KPM_CP', T=526.85, F=1.2128/ +&RAMP ID='KPM_CP', T=626.85, F=1.1711/ +&RAMP ID='KPM_CP', T=1326.85, F=1.2834/ -&VENT XB=-0.05,0.05,-0.05,0.05,0.0,0.0, SURF_ID = 'PMMA SLAB' / +&RAMP ID='KPM_K', T=260, F=0.0576/ +&RAMP ID='KPM_K', T=538, F=0.085/ +&RAMP ID='KPM_K', T=816, F=0.125/ +&RAMP ID='KPM_K', T=1093, F=0.183/ -&VENT MB='XMIN', SURF_ID='OPEN' / -&VENT MB='XMAX', SURF_ID='OPEN' / -&VENT MB='YMIN', SURF_ID='OPEN' / -&VENT MB='YMAX', SURF_ID='OPEN' / -&VENT MB='ZMAX', SURF_ID='OPEN' / -&DUMP DT_DEVC=1. / +&DEVC ID='Mass', QUANTITY='CONTROL VALUE',CTRL_ID='MP', UNITS='[g]' / +&DEVC ID='MLR', XYZ=0.1,0.5,0.0, IOR=3, QUANTITY='BURNING RATE', CONVERSION_FACTOR=1000, UNITS='[g/m2/s]' / +&DEVC ID='Back Surface Temperature', XYZ=0.1,0.5,0.0, IOR=3, QUANTITY='INSIDE WALL TEMPERATURE',DEPTH=-0.03487, CONVERSION_ADDEND=273, UNITS='[K]'/ +&DEVC ID='Top Surface Temperature', XYZ=0.1,0.5,0.0, IOR=3, QUANTITY='WALL TEMPERATURE', CONVERSION_ADDEND=273, UNITS='[K]'/ +&DEVC XYZ=0.1,0.5,0.0,QUANTITY='SURFACE DENSITY',MATL_ID='BLACK PMMA',ID='SD_B',IOR=3/ +&DEVC XYZ=0.1,0.5,0.0,QUANTITY='SURFACE DENSITY',MATL_ID='PMMA_INT',ID='SD_I',IOR=3/ +&DEVC XYZ=0.1,0.5,0.0,QUANTITY='SURFACE DENSITY',MATL_ID='PMMA_CHAR',ID='SD_C',IOR=3/ -&DEVC ID='Mass', XB=-0.05,0.05,-0.05,0.05,0.00,0.01, IOR=3, QUANTITY='SURFACE DENSITY', SPATIAL_STATISTIC='SURFACE INTEGRAL' - CONVERSION_FACTOR=1000, UNITS='[g]' / -&DEVC ID='MLR', XB=-0.05,0.05,-0.05,0.05,0.00,0.01, IOR=3, QUANTITY='MASS FLUX', SPEC_ID='MMA', CONVERSION_FACTOR=1000, UNITS='[g/m2/s]' / -&DEVC ID='Back Surface Temperature', XYZ=0.0,0.0,0.0, IOR=3, QUANTITY='BACK WALL TEMPERATURE', CONVERSION_ADDEND=273, UNITS='[K]'/ -&DEVC ID='Top Surface Temperature', XYZ=0.0,0.0,0.0, IOR=3, QUANTITY='WALL TEMPERATURE', CONVERSION_ADDEND=273, UNITS='[K]'/ +! Sums the virgin, intermediate, and char masses +&CTRL ID='SDsum',FUNCTION_TYPE='SUM',INPUT_ID='SD_B','SD_I','SD_C'/ -&TAIL / +! The functions below remove that portion of the PMMA mass that is the adhesive to give +! SDs - PMMA surface density in kg/m2 +! SDn - Normalized surface density +! MP - Mass of PMMA in g +&CTRL ID='SDs',FUNCTION_TYPE='SUBTRACT',INPUT_ID='SDsum','CONSTANT',CONSTANT=0.40821/ +&CTRL ID='SDn',FUNCTION_TYPE='DIVIDE',INPUT_ID='SDs','CONSTANT',CONSTANT=7.3697/ +&CTRL ID='MP',FUNCTION_TYPE='MULTIPLY',INPUT_ID='SDn','CONSTANT',CONSTANT=28.254/ diff --git a/Validation/NIST_Polymers/FDS_Input_Files/NIST_Gasification_Test_R4.fds b/Validation/NIST_Polymers/FDS_Input_Files/NIST_Gasification_Test_R4.fds index 8c0720fd26d..3cd2ebbc2d2 100644 --- a/Validation/NIST_Polymers/FDS_Input_Files/NIST_Gasification_Test_R4.fds +++ b/Validation/NIST_Polymers/FDS_Input_Files/NIST_Gasification_Test_R4.fds @@ -1,48 +1,64 @@ -&HEAD CHID='NIST_Gasification_Test_R4', TITLE='Black PMMA at 50 kW/m2 in Gasification Apparatus' / +&HEAD CHID='NIST_Gasification_Test_R4', TITLE='Black PMMA at 50 kW/m2 in Gasification Apparatus Test R4' / -&MESH IJK=3,3,4, XB=-0.15,0.15,-0.15,0.15,0.0,0.4 / +&MESH XB=0,1,0,1,0,1,IJK=5,1,4/ -&TIME T_END=500., WALL_INCREMENT=1, DT=0.1 / +&MISC SOLID_PHASE_ONLY=T,TMPA=20.45/ +&VENT XB=0.0,0.2,0,1,0,0,SURF_ID='SAMPLE1'/ -&MISC Y_O2_INFTY=0.001 / +&TIME T_END=500,DT=0.01/ -&MATL ID = 'Kaowool PM Insulation' - DENSITY = 256. - SPECIFIC_HEAT = 1.07 - CONDUCTIVITY_RAMP = 'k_kaowool' / +&CATF OTHER_FILES='pmma_properties.txt' / -&RAMP ID='k_kaowool', T= 260., F=0.0576 / -&RAMP ID='k_kaowool', T= 538., F=0.085 / -&RAMP ID='k_kaowool', T= 816., F=0.125 / -&RAMP ID='k_kaowool', T=1093., F=0.183 / +&MATL ID='KPM', + DENSITY = 256., + SPECIFIC_HEAT_RAMP = 'KPM_CP', + CONDUCTIVITY_RAMP = 'KPM_K', + EMISSIVITY = 0.92/ -&CATF OTHER_FILES='pmma_properties.txt' / +&MATL ID='AL', + DENSITY = 2700., + SPECIFIC_HEAT = 0.89, + CONDUCTIVITY = 100., + EMISSIVITY = 0.3/ -&SURF ID='PMMA SLAB' - COLOR='BLACK' - STRETCH_FACTOR=1. - HEAT_TRANSFER_COEFFICIENT=13. - EXTERNAL_FLUX=50 - BACKING='INSULATED' - MATL_ID='BLACK PMMA','Kaowool PM Insulation' - THICKNESS=0.00565,0.0254 / +! The PMMA was bonded to the the Kaowoll PM (KPM) using a combustible adhesive. +! The mass of adhesive was treated as if it were PMMA and the sample thickess adjusted accordingly. +&SURF ID='SAMPLE1', + HEAT_TRANSFER_COEFFICIENT=13., + COLOR='WHITE', + MATL_ID='BLACK PMMA','KPM','AL', + THICKNESS=0.006077,0.02852,0.00635, + STRETCH_FACTOR=1,1,1, + EXTERNAL_FLUX=50/ -&VENT XB=-0.05,0.05,-0.05,0.05,0.0,0.0, SURF_ID = 'PMMA SLAB' / +&RAMP ID='KPM_CP', T=26.85, F=0.7653/ +&RAMP ID='KPM_CP', T=226.85, F=1.0211/ +&RAMP ID='KPM_CP', T=526.85, F=1.2128/ +&RAMP ID='KPM_CP', T=626.85, F=1.1711/ +&RAMP ID='KPM_CP', T=1326.85, F=1.2834/ -&VENT MB='XMIN', SURF_ID='OPEN' / -&VENT MB='XMAX', SURF_ID='OPEN' / -&VENT MB='YMIN', SURF_ID='OPEN' / -&VENT MB='YMAX', SURF_ID='OPEN' / -&VENT MB='ZMAX', SURF_ID='OPEN' / +&RAMP ID='KPM_K', T=260, F=0.0576/ +&RAMP ID='KPM_K', T=538, F=0.085/ +&RAMP ID='KPM_K', T=816, F=0.125/ +&RAMP ID='KPM_K', T=1093, F=0.183/ -&DUMP DT_DEVC=1. / +&DEVC ID='Mass', QUANTITY='CONTROL VALUE',CTRL_ID='MP', UNITS='[g]' / +&DEVC ID='MLR', XYZ=0.1,0.5,0.0, IOR=3, QUANTITY='BURNING RATE', CONVERSION_FACTOR=1000, UNITS='[g/m2/s]' / +&DEVC ID='Back Surface Temperature', XYZ=0.1,0.5,0.0, IOR=3, QUANTITY='INSIDE WALL TEMPERATURE',DEPTH=-0.03487, CONVERSION_ADDEND=273, UNITS='[K]'/ +&DEVC ID='Top Surface Temperature', XYZ=0.1,0.5,0.0, IOR=3, QUANTITY='WALL TEMPERATURE', CONVERSION_ADDEND=273, UNITS='[K]'/ +&DEVC XYZ=0.1,0.5,0.0,QUANTITY='SURFACE DENSITY',MATL_ID='BLACK PMMA',ID='SD_B',IOR=3/ +&DEVC XYZ=0.1,0.5,0.0,QUANTITY='SURFACE DENSITY',MATL_ID='PMMA_INT',ID='SD_I',IOR=3/ +&DEVC XYZ=0.1,0.5,0.0,QUANTITY='SURFACE DENSITY',MATL_ID='PMMA_CHAR',ID='SD_C',IOR=3/ -&DEVC ID='Mass', XB=-0.05,0.05,-0.05,0.05,0.00,0.01, IOR=3, QUANTITY='SURFACE DENSITY', SPATIAL_STATISTIC='SURFACE INTEGRAL' - CONVERSION_FACTOR=1000, UNITS='[g]' / -&DEVC ID='MLR', XB=-0.05,0.05,-0.05,0.05,0.00,0.01, IOR=3, QUANTITY='MASS FLUX', SPEC_ID='MMA', CONVERSION_FACTOR=1000, UNITS='[g/m2/s]' / -&DEVC ID='Back Surface Temperature', XYZ=0.0,0.0,0.0, IOR=3, QUANTITY='BACK WALL TEMPERATURE', CONVERSION_ADDEND=273, UNITS='[K]'/ -&DEVC ID='Top Surface Temperature', XYZ=0.0,0.0,0.0, IOR=3, QUANTITY='WALL TEMPERATURE', CONVERSION_ADDEND=273, UNITS='[K]'/ +! Sums the virgin, intermediate, and char masses +&CTRL ID='SDsum',FUNCTION_TYPE='SUM',INPUT_ID='SD_B','SD_I','SD_C'/ -&TAIL / +! The functions below remove that portion of the PMMA mass that is the adhesive to give +! SDs - PMMA surface density in kg/m2 +! SDn - Normalized surface density +! MP - Mass of PMMA in g +&CTRL ID='SDs',FUNCTION_TYPE='SUBTRACT',INPUT_ID='SDsum','CONSTANT',CONSTANT=0.66487/ +&CTRL ID='SDn',FUNCTION_TYPE='DIVIDE',INPUT_ID='SDs','CONSTANT',CONSTANT=7.3535/ +&CTRL ID='MP',FUNCTION_TYPE='MULTIPLY',INPUT_ID='SDn','CONSTANT',CONSTANT=28.192/ diff --git a/Validation/NIST_Polymers/FDS_Input_Files/NIST_Gasification_Test_R5.fds b/Validation/NIST_Polymers/FDS_Input_Files/NIST_Gasification_Test_R5.fds index 7cf58ad32e4..3fcce33f2ec 100644 --- a/Validation/NIST_Polymers/FDS_Input_Files/NIST_Gasification_Test_R5.fds +++ b/Validation/NIST_Polymers/FDS_Input_Files/NIST_Gasification_Test_R5.fds @@ -1,48 +1,64 @@ -&HEAD CHID='NIST_Gasification_Test_R5', TITLE='Black PMMA at 50 kW/m2 in Gasification Apparatus' / +&HEAD CHID='NIST_Gasification_Test_R5', TITLE='Black PMMA at 50 kW/m2 in Gasification Apparatus Test R5' / -&MESH IJK=3,3,4, XB=-0.15,0.15,-0.15,0.15,0.0,0.4 / +&MESH XB=0,1,0,1,0,1,IJK=5,1,4/ -&TIME T_END=500., WALL_INCREMENT=1, DT=0.1 / +&MISC SOLID_PHASE_ONLY=T,TMPA=20.45/ +&VENT XB=0.0,0.2,0,1,0,0,SURF_ID='SAMPLE1'/ -&MISC Y_O2_INFTY=0.001 / +&TIME T_END=500,DT=0.01/ -&MATL ID = 'Kaowool PM Insulation' - DENSITY = 256. - SPECIFIC_HEAT = 1.07 - CONDUCTIVITY_RAMP = 'k_kaowool' / +&CATF OTHER_FILES='pmma_properties.txt' / -&RAMP ID='k_kaowool', T= 260., F=0.0576 / -&RAMP ID='k_kaowool', T= 538., F=0.085 / -&RAMP ID='k_kaowool', T= 816., F=0.125 / -&RAMP ID='k_kaowool', T=1093., F=0.183 / +&MATL ID='KPM', + DENSITY = 256., + SPECIFIC_HEAT_RAMP = 'KPM_CP', + CONDUCTIVITY_RAMP = 'KPM_K', + EMISSIVITY = 0.92/ -&CATF OTHER_FILES='pmma_properties.txt' / +&MATL ID='AL', + DENSITY = 2700., + SPECIFIC_HEAT = 0.89, + CONDUCTIVITY = 100., + EMISSIVITY = 0.3/ -&SURF ID='PMMA SLAB' - COLOR='BLACK' - STRETCH_FACTOR=1. - HEAT_TRANSFER_COEFFICIENT=13. - EXTERNAL_FLUX=50 - BACKING='INSULATED' - MATL_ID='BLACK PMMA','Kaowool PM Insulation' - THICKNESS=0.0062,0.0254 / +! The PMMA was bonded to the the Kaowoll PM (KPM) using a combustible adhesive. +! The mass of adhesive was treated as if it were PMMA and the sample thickess adjusted accordingly. +&SURF ID='SAMPLE1', + HEAT_TRANSFER_COEFFICIENT=13., + COLOR='WHITE', + MATL_ID='BLACK PMMA','KPM','AL', + THICKNESS=0.006523,0.02852,0.00635, + STRETCH_FACTOR=1,1,1, + EXTERNAL_FLUX=50/ -&VENT XB=-0.05,0.05,-0.05,0.05,0.0,0.0, SURF_ID = 'PMMA SLAB' / +&RAMP ID='KPM_CP', T=26.85, F=0.7653/ +&RAMP ID='KPM_CP', T=226.85, F=1.0211/ +&RAMP ID='KPM_CP', T=526.85, F=1.2128/ +&RAMP ID='KPM_CP', T=626.85, F=1.1711/ +&RAMP ID='KPM_CP', T=1326.85, F=1.2834/ -&VENT MB='XMIN', SURF_ID='OPEN' / -&VENT MB='XMAX', SURF_ID='OPEN' / -&VENT MB='YMIN', SURF_ID='OPEN' / -&VENT MB='YMAX', SURF_ID='OPEN' / -&VENT MB='ZMAX', SURF_ID='OPEN' / +&RAMP ID='KPM_K', T=260, F=0.0576/ +&RAMP ID='KPM_K', T=538, F=0.085/ +&RAMP ID='KPM_K', T=816, F=0.125/ +&RAMP ID='KPM_K', T=1093, F=0.183/ -&DUMP DT_DEVC=1. / +&DEVC ID='Mass', QUANTITY='CONTROL VALUE',CTRL_ID='MP', UNITS='[g]' / +&DEVC ID='MLR', XYZ=0.1,0.5,0.0, IOR=3, QUANTITY='BURNING RATE', CONVERSION_FACTOR=1000, UNITS='[g/m2/s]' / +&DEVC ID='Back Surface Temperature', XYZ=0.1,0.5,0.0, IOR=3, QUANTITY='INSIDE WALL TEMPERATURE',DEPTH=-0.03487, CONVERSION_ADDEND=273, UNITS='[K]'/ +&DEVC ID='Top Surface Temperature', XYZ=0.1,0.5,0.0, IOR=3, QUANTITY='WALL TEMPERATURE', CONVERSION_ADDEND=273, UNITS='[K]'/ +&DEVC XYZ=0.1,0.5,0.0,QUANTITY='SURFACE DENSITY',MATL_ID='BLACK PMMA',ID='SD_B',IOR=3/ +&DEVC XYZ=0.1,0.5,0.0,QUANTITY='SURFACE DENSITY',MATL_ID='PMMA_INT',ID='SD_I',IOR=3/ +&DEVC XYZ=0.1,0.5,0.0,QUANTITY='SURFACE DENSITY',MATL_ID='PMMA_CHAR',ID='SD_C',IOR=3/ -&DEVC ID='Mass', XB=-0.05,0.05,-0.05,0.05,0.00,0.01, IOR=3, QUANTITY='SURFACE DENSITY', SPATIAL_STATISTIC='SURFACE INTEGRAL' - CONVERSION_FACTOR=1000, UNITS='[g]' / -&DEVC ID='MLR', XB=-0.05,0.05,-0.05,0.05,0.00,0.01, IOR=3, QUANTITY='MASS FLUX', SPEC_ID='MMA', CONVERSION_FACTOR=1000, UNITS='[g/m2/s]' / -&DEVC ID='Back Surface Temperature', XYZ=0.0,0.0,0.0, IOR=3, QUANTITY='BACK WALL TEMPERATURE', CONVERSION_ADDEND=273, UNITS='[K]'/ -&DEVC ID='Top Surface Temperature', XYZ=0.0,0.0,0.0, IOR=3, QUANTITY='WALL TEMPERATURE', CONVERSION_ADDEND=273, UNITS='[K]'/ +! Sums the virgin, intermediate, and char masses +&CTRL ID='SDsum',FUNCTION_TYPE='SUM',INPUT_ID='SD_B','SD_I','SD_C'/ -&TAIL / +! The functions below remove that portion of the PMMA mass that is the adhesive to give +! SDs - PMMA surface density in kg/m2 +! SDn - Normalized surface density +! MP - Mass of PMMA in g +&CTRL ID='SDs',FUNCTION_TYPE='SUBTRACT',INPUT_ID='SDsum','CONSTANT',CONSTANT=0.56704/ +&CTRL ID='SDn',FUNCTION_TYPE='DIVIDE',INPUT_ID='SDs','CONSTANT',CONSTANT=7.8930/ +&CTRL ID='MP',FUNCTION_TYPE='MULTIPLY',INPUT_ID='SDn','CONSTANT',CONSTANT=30.289/