-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodels.py
266 lines (219 loc) · 10.5 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
import random, pdb, math, copy, numpy
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import matplotlib.pyplot as plt
import torch.nn.functional as F
from experience import Rollout
import search, utils
class ForwardModelImageEnsembleSmall(nn.Module):
def __init__(self, config, vae=False):
super(ForwardModelImageEnsembleSmall, self).__init__()
self.config = config
n_channels = config.n_input_channels
n_frames = config.n_input_frames
n_feats = config.n_feature_maps
n_models = config.n_ensemble
self.n_channels = n_channels
self.n_models = n_models
self.n_feats = n_feats
self.n_frames = n_frames
self.conv1 = nn.Conv2d(n_models*n_channels*n_frames, n_models*n_feats, 3, 1, 1, groups=n_models)
self.deconv1 = nn.ConvTranspose2d(n_models*n_feats, n_models*n_feats, 3, 1, 1, groups=n_models)
self.deconv2 = nn.ConvTranspose2d(n_models*n_feats, n_models*n_channels, 3, 1, 1, groups=n_models)
self.action_encoder = EnsembleLinearGPU(self.config.n_actions, self.n_feats, n_models)
self.reward_predictor_conv = nn.Sequential(nn.Conv2d(n_models*n_feats, n_models*n_feats, 3, 2, 1, groups=n_models),
nn.ReLU(),
nn.Conv2d(n_models*n_feats, n_models*n_feats, 3, 2, 1, groups=n_models),
nn.ReLU(),
nn.Conv2d(n_models*n_feats, n_models*n_feats, 3, 2, 1, groups=n_models),
nn.ReLU()
)
# dry run to get FC layer sizes
bsize = 8
state = torch.randn(bsize, self.n_models*n_feats, self.config.height, self.config.width)
h = self.reward_predictor_conv(state).view(bsize*self.n_models, -1)
self.reward_predictor_fc = nn.Sequential(EnsembleLinearGPU(h.size(1), n_feats, n_models),
nn.ReLU(),
EnsembleLinearGPU(n_feats, 1, n_models)
)
def forward(self, state, action):
nsamples = action.size(0)
assert(nsamples % self.n_models == 0)
bsize = int(nsamples/self.n_models)
state = state.contiguous()
state = state.view(bsize, self.n_models*self.n_channels*self.n_frames, self.config.height, self.config.width).contiguous()
e1 = F.relu(self.conv1(state))
aemb = self.action_encoder(action)
aemb = aemb.view(bsize, self.n_models*self.n_feats, 1, 1)
e2 = e1 + aemb
d2 = F.relu(self.deconv1(e2))
d1 = self.deconv2(d2)
hr = self.reward_predictor_conv(e2)
r_pred = self.reward_predictor_fc(hr.view(bsize*self.n_models, -1)).view(bsize*self.n_models)
state = state.view(bsize*self.n_models, self.n_channels*self.n_frames, self.config.height, self.config.width).contiguous()
out = state + d1.view(bsize*self.n_models, self.n_channels, self.config.height, self.config.width)
return out, r_pred
def forward_all(self, phi, action, particles=True):
s_pred, r_pred = self.forward(phi, action.repeat(phi.size(0), 1))
return s_pred, r_pred
class ForwardModel(nn.Module):
def __init__(self, config):
super(ForwardModel, self).__init__()
self.config = config
self.network1 = nn.Sequential(
nn.Linear(config.edim, config.n_hidden),
nn.LayerNorm(config.n_hidden),
nn.Dropout(p=config.p_dropout),
nn.LeakyReLU(0.2),
nn.Linear(config.n_hidden, config.n_hidden)
)
self.network2 = nn.Sequential(
nn.Linear(config.n_hidden, config.n_hidden),
nn.LayerNorm(config.n_hidden),
nn.Dropout(p=config.p_dropout),
nn.LeakyReLU(0.2),
nn.Linear(config.n_hidden, config.n_hidden),
nn.LayerNorm(config.n_hidden),
nn.Dropout(p=config.p_dropout),
nn.LeakyReLU(0.2)
)
self.final_layer = nn.Linear(config.n_hidden, config.edim + 1)
self.action_encoder = nn.Linear(config.n_actions, config.n_hidden)
def forward(self, phi, action):
phi = phi.squeeze()
h = self.network1(phi)
a = self.action_encoder(action)
if self.config.a_combine == 'add':
h = h + a
elif self.config.a_combine == 'mult':
h = h * a
else:
return ValueError
h_final = self.network2(h)
h = self.final_layer(h_final)
phi_next = phi + h[:, :self.config.edim]
r_pred = h[:, self.config.edim]
return phi_next, r_pred, h_final
# ensemble parallelized for GPU
class EnsembleLinearGPU(nn.Module):
def __init__(self, in_features, out_features, n_ensemble, bias=True):
super(EnsembleLinearGPU, self).__init__()
self.in_features = in_features
self.out_features = out_features
self.n_ensemble = n_ensemble
self.bias = bias
self.weights = nn.Parameter(torch.Tensor(n_ensemble, out_features, in_features))
if bias:
self.biases = nn.Parameter(torch.Tensor(n_ensemble, out_features))
else:
self.register_parameter('biases', None)
self.reset_parameters()
def reset_parameters(self):
for weight in self.weights:
w = nn.Linear(self.in_features, self.out_features)
torch.nn.init.kaiming_uniform_(weight, a=math.sqrt(5))
torch.nn.init.kaiming_uniform_(weight, a=math.sqrt(5))
if self.biases is not None:
for bias in self.biases:
fan_in, _ = torch.nn.init._calculate_fan_in_and_fan_out(self.weights[0])
bound = 1 / math.sqrt(fan_in)
torch.nn.init.uniform_(bias, -bound, bound)
def forward(self, inputs):
# check input sizes
if inputs.dim() == 3:
# assuming size is [n_ensemble x batch_size x features]
assert(inputs.size(0) == self.n_ensemble and inputs.size(2) == self.in_features)
elif inputs.dim() == 2:
n_samples, n_features = inputs.size(0), inputs.size(1)
assert (n_samples % self.n_ensemble == 0 and n_features == self.in_features), [n_samples, self.n_ensemble, n_features, self.in_features]
batch_size = int(n_samples / self.n_ensemble)
inputs = inputs.view(self.n_ensemble, batch_size, n_features)
# reshape to [n_ensemble x n_features x batch_size]
inputs = inputs.permute(0, 2, 1)
outputs = torch.bmm(self.weights, inputs)
outputs = outputs
if self.bias:
outputs = outputs + self.biases.unsqueeze(2)
# reshape to [n_ensemble x batch_size x n_features]
outputs = outputs.permute(0, 2, 1).contiguous()
return outputs
class ForwardModelEnsembleGPU(nn.Module):
def __init__(self, config):
super(ForwardModelEnsembleGPU, self).__init__()
self.config = config
self.network1 = nn.Sequential(
EnsembleLinearGPU(config.edim, config.n_hidden, config.n_ensemble),
nn.LayerNorm(config.n_hidden, elementwise_affine=False),
nn.Dropout(p=config.p_dropout),
nn.LeakyReLU(0.2),
EnsembleLinearGPU(config.n_hidden, config.n_hidden, config.n_ensemble),
nn.LayerNorm(config.n_hidden, elementwise_affine=False)
)
self.network2 = nn.Sequential(
EnsembleLinearGPU(config.n_hidden, config.n_hidden, config.n_ensemble),
nn.LayerNorm(config.n_hidden, elementwise_affine=False),
nn.Dropout(p=config.p_dropout),
nn.LeakyReLU(0.2),
EnsembleLinearGPU(config.n_hidden, config.n_hidden, config.n_ensemble),
nn.LayerNorm(config.n_hidden, elementwise_affine=False),
nn.Dropout(p=config.p_dropout),
nn.LeakyReLU(0.2),
EnsembleLinearGPU(config.n_hidden, config.edim + 1, config.n_ensemble) )
self.action_encoder = EnsembleLinearGPU(config.n_actions, config.n_hidden, config.n_ensemble)
def forward(self, phi, action):
phi = phi.squeeze()
h = self.network1(phi)
a = self.action_encoder(action)
if self.config.a_combine == 'add':
h = h + a
elif self.config.a_combine == 'mult':
h = h * a
else:
return ValueError
h = self.network2(h)
phi_next = phi + h[:, :, :self.config.edim].contiguous().view(phi.size())
r_pred = h[:, :, self.config.edim]
r_pred = r_pred.contiguous().view(-1)
return phi_next, r_pred
def forward_all(self, phi, action, particles=True):
s_pred, r_pred = self.forward(phi, action.repeat(phi.size(0), 1))
return s_pred, r_pred
class DQN(nn.Module):
def __init__(self, config):
super(DQN, self).__init__()
self.config = config
self.q_network = nn.Sequential(
nn.Linear(config.edim, config.n_hidden),
nn.ReLU(),
nn.Linear(config.n_hidden, config.n_hidden),
nn.ReLU(),
nn.Linear(config.n_hidden, config.n_actions)
)
self.q_network2 = nn.Sequential(
nn.Linear(config.edim, config.n_hidden),
nn.ReLU(),
nn.Linear(config.n_hidden, config.n_hidden),
nn.ReLU(),
nn.Linear(config.n_hidden, config.n_actions)
)
self.sync_networks()
self.batch_indices = torch.arange(0, self.config.batch_size).long()
def sync_networks(self):
self.q_network2.load_state_dict(self.q_network.state_dict())
def forward(self, states, actions=None, next_states=None, rewards=None, terminals=None):
q = self.q_network(states)
if actions is None:
return q, None
else:
q = q[self.batch_indices, actions]
q_next = self.q_network2(next_states).detach()
q_next = q_next
# Double DQN
best_actions = torch.argmax(self.q_network(next_states), dim=-1)
q_next = q_next[self.batch_indices, best_actions]
q_next = q_next*self.config.gamma*(1-terminals)
q_next.add_(rewards)
loss = F.smooth_l1_loss(q, q_next)
return q, loss