A framework to build, transform, and analyze datasets.
CVAT annotations -- ---> Annotation tool
\ /
COCO-like dataset -----> Datumaro ---> dataset ------> Model training
/ \
VOC-like dataset -- ---> Publication etc.
- Dataset format conversions:
- COCO (
image_info
,instances
,person_keypoints
,captions
,labels
*)- Format specification
- Dataset example
labels
are our extension - likeinstances
with onlycategory_id
- PASCAL VOC (
classification
,detection
,segmentation
(class, instances),action_classification
,person_layout
) - YOLO (
bboxes
) - TF Detection API (
bboxes
,masks
)- Format specifications: bboxes, masks
- Dataset example
- MOT sequences
- CVAT
- LabelMe
- COCO (
- Dataset building operations:
- Merging multiple datasets into one
- Dataset filtering with custom conditions, for instance:
- remove polygons of a certain class
- remove images without a specific class
- remove
occluded
annotations from images - keep only vertically-oriented images
- remove small area bounding boxes from annotations
- Annotation conversions, for instance:
- polygons to instance masks and vise-versa
- apply a custom colormap for mask annotations
- rename or remove dataset labels
- Dataset comparison
- Model integration:
- Inference (OpenVINO and custom models)
- Explainable AI (RISE algorithm)
Check the design document for a full list of features
Optionally, create a virtual environment:
python -m pip install virtualenv
python -m virtualenv venv
. venv/bin/activate
Install Datumaro package:
pip install 'git+https://github.com/opencv/cvat#egg=datumaro&subdirectory=datumaro'
There are several options available:
User
|
v
+------------------+
| CVAT |
+--------v---------+ +------------------+ +--------------+
| Datumaro module | ----> | Datumaro project | <---> | Datumaro CLI | <--- User
+------------------+ +------------------+ +--------------+
datum --help
python -m datumaro --help
Datumaro can be used in custom scripts as a library in the following way:
from datumaro.components.project import Project # project-related things
import datumaro.components.extractor # annotations and high-level interfaces
# etc.
project = Project.load('directory')
-
Convert PASCAL VOC to COCO, keep only images with
cat
class presented:# Download VOC dataset: # http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar datum convert --input-format voc --input-path <path/to/voc> \ --output-format coco --filter '/item[annotation/label="cat"]'
-
Convert only non-occluded annotations from a CVAT-annotated project to TFrecord:
# export Datumaro dataset in CVAT UI, extract somewhere, go to the project dir datum project extract --filter '/item/annotation[occluded="False"]' \ --mode items+anno --output-dir not_occluded datum project export --project not_occluded \ --format tf_detection_api -- --save-images
-
Annotate COCO, extract image subset, re-annotate it in CVAT, update old dataset:
# Download COCO dataset http://cocodataset.org/#download # Put images to coco/images/ and annotations to coco/annotations/ datum project import --format coco --input-path <path/to/coco> datum project export --filter '/image[images_I_dont_like]' --format cvat \ --output-dir reannotation # import dataset and images to CVAT, re-annotate # export Datumaro project, extract to 'reannotation-upd' datum project project merge reannotation-upd datum project export --format coco
-
Annotate instance polygons in CVAT, export as masks in COCO:
datum convert --input-format cvat --input-path <path/to/cvat.xml> \ --output-format coco -- --segmentation-mode masks
-
Apply an OpenVINO detection model to some COCO-like dataset, then compare annotations with ground truth and visualize in TensorBoard:
datum project import --format coco --input-path <path/to/coco> # create model results interpretation script datum model add mymodel openvino \ --weights model.bin --description model.xml \ --interpretation-script parse_results.py datum model run --model mymodel --output-dir mymodel_inference/ datum project diff mymodel_inference/ --format tensorboard --output-dir diff
-
Change colors in PASCAL VOC-like
.png
masks:datum project import --format voc --input-path <path/to/voc/dataset> # Create a color map file with desired colors: # # label : color_rgb : parts : actions # cat:0,0,255:: # dog:255,0,0:: # # Save as mycolormap.txt datum project export --format voc_segmentation -- --label-map mycolormap.txt # add "--apply-colormap=0" to save grayscale (indexed) masks # check "--help" option for more info # use "datum --loglevel debug" for extra conversion info
Feel free to open an Issue if you think something needs to be changed. You are welcome to participate in development, development instructions are available in our developer manual.