-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrotate_and_crop.py
165 lines (130 loc) · 5.92 KB
/
rotate_and_crop.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import math
import numpy as np
import cv2
def rotate_and_crop(img_array, angle, save_rot_only=False):
"""
Function takes in an image and rotates it by a certain angle, crops accordingly
INPUTS:
::np.array:: img_array #numpy array of image
::float:: Angle #angle of rotation in degrees
::boolean:: save_rot_only #whether or not to save the only rotated image
OUTPUT:
::np.array:: #rotated and cropped image
"""
#Angle in this function below is in radians!
def largest_rotated_rect(w, h, angle):
"""
Given a rectangle of size wxh that has been rotated by 'angle' (in
radians), computes the width and height of the largest possible
axis-aligned rectangle within the rotated rectangle.
Original JS code by 'Andri' and Magnus Hoff from Stack Overflow
Converted to Python by Aaron Snoswell
"""
quadrant = int(math.floor(angle / (math.pi / 2))) & 3
sign_alpha = angle if ((quadrant & 1) == 0) else math.pi - angle
alpha = (sign_alpha % math.pi + math.pi) % math.pi
bb_w = w * math.cos(alpha) + h * math.sin(alpha)
bb_h = w * math.sin(alpha) + h * math.cos(alpha)
gamma = math.atan2(bb_w, bb_w) if (w < h) else math.atan2(bb_w, bb_w)
delta = math.pi - alpha - gamma
length = h if (w < h) else w
d = length * math.cos(alpha)
a = d * math.sin(alpha) / math.sin(delta)
y = a * math.cos(gamma)
x = y * math.tan(gamma)
return (
bb_w - 2 * x,
bb_h - 2 * y
)
def rotate_image(image, angle):
"""
Rotates an OpenCV 2 / NumPy image about it's centre by the given angle
(in degrees). The returned image will be large enough to hold the entire
new image, with a black background
"""
# Get the image size
# No that's not an error - NumPy stores image matricies backwards
image_size = (image.shape[1], image.shape[0])
image_center = tuple(np.array(image_size) / 2)
# Convert the OpenCV 3x2 rotation matrix to 3x3
rot_mat = np.vstack(
[cv2.getRotationMatrix2D(image_center, angle, 1.0), [0, 0, 1]]
)
rot_mat_notranslate = np.matrix(rot_mat[0:2, 0:2])
# Shorthand for below calcs
image_w2 = image_size[0] * 0.5
image_h2 = image_size[1] * 0.5
# Obtain the rotated coordinates of the image corners
rotated_coords = [
(np.array([-image_w2, image_h2]) * rot_mat_notranslate).A[0],
(np.array([ image_w2, image_h2]) * rot_mat_notranslate).A[0],
(np.array([-image_w2, -image_h2]) * rot_mat_notranslate).A[0],
(np.array([ image_w2, -image_h2]) * rot_mat_notranslate).A[0]
]
# Find the size of the new image
x_coords = [pt[0] for pt in rotated_coords]
x_pos = [x for x in x_coords if x > 0]
x_neg = [x for x in x_coords if x < 0]
y_coords = [pt[1] for pt in rotated_coords]
y_pos = [y for y in y_coords if y > 0]
y_neg = [y for y in y_coords if y < 0]
right_bound = max(x_pos)
left_bound = min(x_neg)
top_bound = max(y_pos)
bot_bound = min(y_neg)
new_w = int(abs(right_bound - left_bound))
new_h = int(abs(top_bound - bot_bound))
# We require a translation matrix to keep the image centred
trans_mat = np.matrix([
[1, 0, int(new_w * 0.5 - image_w2)],
[0, 1, int(new_h * 0.5 - image_h2)],
[0, 0, 1]
])
# Compute the tranform for the combined rotation and translation
affine_mat = (np.matrix(trans_mat) * np.matrix(rot_mat))[0:2, :]
# Apply the transform
result = cv2.warpAffine(
image,
affine_mat,
(new_w, new_h),
flags=cv2.INTER_LINEAR
)
return result
def rotate(img_array,angle,save_rot_only=False):
height, width = img_array.shape[0:2] #height and width of original image
rotated_img = rotate_image(img_array,angle) #rotated image
#print(largest_rotated_rect(width, height, angle*math.pi/180))
rot_height, rot_width = rotated_img.shape[0:2] #height and width of rotated image
cx = int(rot_width/2) #centre x-coordinate of rotated image
cy = int(rot_height/2) #centre y-coordinate of rotated image
wr,hr = largest_rotated_rect(width, height, angle*math.pi/180) #width and height of rectangle with largest area that is in rotated image (within the borders of the original image)
begin_width = int(cx-0.5*wr) #left
end_width = int(cx+0.5*wr) #right
begin_height = int(cy-0.5*hr) #top
end_height = int(cy+0.5*hr) #bottom
img_cropped=rotated_img[begin_height:end_height, begin_width:end_width] #crop the image to rectangle with largest area
if save_rot_only==True: #if you want to save the only rotated image
#draw a rectangle to show the border of the rectangle with largest area that is inside the borders of original image
start_point=(begin_width,begin_height)
end_point=(end_width,end_height)
# Blue color in BGR
color = (255, 0, 0)
# Line thickness of 2 px
thickness = 2
# Using cv2.rectangle() method
# Draw a rectangle with blue line borders of thickness of 2 px
rotated_img = cv2.rectangle(rotated_img, start_point, end_point, color, thickness)
cv2.imwrite('only_rot.jpg', rotated_img) #save image
return img_cropped
rotated_cropped = rotate(img_array,angle)
return rotated_cropped
"""
#How to use this code
img_array = cv2.imread('2_kitchen.jpg')
w = img_array.shape[1]
h = img_array.shape[0]
print("Width, height = ", w, h)
angle = 20
result=rotate_and_crop(img_array,angle)
cv2.imwrite('rotated.jpg', result)
"""