From 29ed78e7b19a8f49c475b7f1828d0919a80d8788 Mon Sep 17 00:00:00 2001 From: rakow Date: Fri, 2 Aug 2024 19:02:46 +0200 Subject: [PATCH] added notes and docs --- src/main/python/calibrate.py | 2 +- src/main/python/create_ref.py | 19 +++++++++++++++---- 2 files changed, 16 insertions(+), 5 deletions(-) diff --git a/src/main/python/calibrate.py b/src/main/python/calibrate.py index 3ffcdf0..cb583c5 100644 --- a/src/main/python/calibrate.py +++ b/src/main/python/calibrate.py @@ -33,7 +33,7 @@ "ride": -0.76 } -# Based on MiD 2017, filtered on Lausitz region +# Based on MiD 2017, filtered on Lausitz region (see create_ref.py) target = { "walk": 0.199819, "bike": 0.116362, diff --git a/src/main/python/create_ref.py b/src/main/python/create_ref.py index 5f81576..9bd9c27 100644 --- a/src/main/python/create_ref.py +++ b/src/main/python/create_ref.py @@ -11,27 +11,36 @@ def person_filter(df): + """ Filter person that are relevant for the calibration.""" + df = gpd.GeoDataFrame(df, geometry=gpd.GeoSeries.from_wkt(df.geom, crs="EPSG:4326").to_crs(CRS)) df = gpd.sjoin(df, region, how="inner", predicate="intersects") + # Groups will be shown on the dashboard df["age"] = cut(df.age, [0, 12, 18, 25, 35, 66, np.inf]) + df["hh_income"] = cut(df.income, [0, 500, 900, 1500, 2000, 2600, 3000, 3600, 4600, 5600, np.inf]) + # Only weekdays are considered, with persons present in their home region return df[df.present_on_day & (df.reporting_day <= 5)] def trip_filter(df): - # Other modes are ignored in the total share + # All modes, expect for "other" are considered return df[df.main_mode != "other"] if __name__ == "__main__": + + # Defines the Lausitz region region = gpd.read_file("../../../../shared-svn/projects/DiTriMo/data/shp/lausitz.shp").to_crs(CRS) + # This contains the path to the MiD 2017 data with the highest resolution + # See https://daten.clearingstelle-verkehr.de/279/ for more information, the data is not included in this repository r = run_create_ref_data.create( "/Volumes/Untitled/B3_Lokal-Datensatzpaket/CSV", person_filter, trip_filter, run_create_ref_data.InvalidHandling.REMOVE_TRIPS, - ref_groups=["age"] + ref_groups=["age", "hh_income", "economic_status"] ) print("Filtered %s persons" % len(r.persons)) @@ -39,7 +48,9 @@ def trip_filter(df): print(r.share) - # Simulated trips + # Calculate the number of short distance trips that are missing in the simulated data + # This function required that one run with 0 iterations has been performed beforehand + sim_persons = pd.read_csv("../../../output/output-lausitz-100pct/lausitz-100pct.output_persons.csv.gz", delimiter=";", dtype={"person": "str"}) sim_persons = sim_persons[sim_persons.subpopulation == "person"] @@ -53,5 +64,5 @@ def trip_filter(df): sim = pd.merge(sim, sim_persons, how="inner", left_on="person", right_on="person", validate="many_to_one") - share, add_trips = calc_needed_short_distance_trips(trips, sim, max_dist=700) + share, add_trips = calc_needed_short_distance_trips(r.trips, sim, max_dist=700) print("Short distance trip missing: ", add_trips)