-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_minecart_pixel.py
195 lines (155 loc) · 5.8 KB
/
train_minecart_pixel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import gym
from datetime import datetime
import uuid
class Flatten(nn.Module):
def forward(self, x):
return torch.flatten(x, start_dim=1)
class Actor(nn.Module):
def __init__(self, nS, nA):
super(Actor, self).__init__()
self.nS = nS
self.nA = nA
self.common = nn.Sequential(
nn.Conv2d(nS[0], 32, kernel_size=8, stride=4),
nn.ReLU(),
nn.Conv2d(32, 64, kernel_size=4, stride=2),
nn.ReLU(),
nn.Conv2d(64, 64, kernel_size=3, stride=1),
nn.ReLU(),
Flatten(),
nn.Linear(64, 20),
nn.Tanh()
)
self.actor = nn.Sequential(
nn.Linear(20, 20),
nn.Tanh(),
nn.Linear(20, nA),
)
def ortho(m, gain):
if hasattr(m, 'weight'):
nn.init.orthogonal_(m.weight, gain=gain)
self.common.apply(lambda m: ortho(m, np.sqrt(2)))
self.actor.apply(lambda m: ortho(m, 0.01))
def forward(self, state):
x = self.common(state)
x = self.actor(x)
x = F.log_softmax(x, dim=1)
return x
class Critic(nn.Module):
def __init__(self, actor, c=11, nO=2, device='cpu'):
super(Critic, self).__init__()
self.device = device
self.c = c
self.nO = nO
self.common = actor.common
self.critic = nn.Sequential(
nn.Linear(20, 20),
nn.Tanh(),
nn.Linear(20, c**self.nO)
)
def ortho(m, gain):
if hasattr(m, 'weight'):
nn.init.orthogonal_(m.weight, gain=gain)
self.critic.apply(lambda m: ortho(m, np.sqrt(2)))
def forward(self, state):
x = self.common(state)
x = self.critic(x)
x = F.softmax(x, dim=1)
x = x.view(-1, *([self.c]*self.nO))
return x
class TimestepEnv(gym.RewardWrapper):
def __init__(self, env, utility):
super(TimestepEnv, self).__init__(env)
self.utility = utility
def reward(self, rew):
rew = self.utility(rew.astype(np.float32).reshape(1, -1)).reshape(-1)
return rew
class RewardArray(gym.RewardWrapper):
def reward(self, rew):
return np.array([rew], dtype=np.float32)
class OneOre(gym.RewardWrapper):
def __init__(self, *args, **kwargs):
super(OneOre, self).__init__(*args, **kwargs)
self.reward_space = gym.spaces.Box(low=self.reward_space.low[1:], high=self.reward_space.high[1:])
def reward(self, rew):
return rew[1:]
def utility_contract(values):
o0, o1, fuel = values[:,0], values[:,1], values[:,2]
target = [0.2, 0.5]; contract_price = 5.; market_price = 7.; compensation = 2.
penalty = (o0 < target[0]) | (o1 < target[1])
sale_0 = o0.clamp(max=target[0])*contract_price + (o0-target[0]).clamp(min=0)*market_price
sale_1 = o1.clamp(max=target[1])*contract_price + (o1-target[1]).clamp(min=0)*market_price
sales = sale_0 + sale_1 - compensation*penalty
return (sales + fuel/20.).view(-1, 1)
def utility_contract_2d(values):
ores, fuel = values[:,0], values[:,1]
target = 0.7; contract_price = 5.; market_price = 7.; compensation = 2.
penalty = ores < target
sales = ores.clamp(max=target)*contract_price + (ores-target).clamp(min=0)*market_price + - compensation*penalty
return (sales + fuel/20.).view(-1, 1)
if __name__ == '__main__':
from agents.mocac import MOCAC
from policies.policy import Categorical, Normal
from memory.memory import Memory
from gym.wrappers import TimeLimit
from wrappers.one_hot import OneHotEnv
from wrappers.weighted_sum import WeightedSum
from wrappers.terminal import TerminalEnv
from wrappers.atari import Rescale42x42, NormalizedEnv
from wrappers.minecart_pixel import PixelMinecart
from wrappers.history import History
import argparse
import os
import envs.minecart
parser = argparse.ArgumentParser(description='')
parser.add_argument('--lr', default=3e-4, type=float)
parser.add_argument('--gamma', default=1.00, type=float)
parser.add_argument('--e-coef', default=0.1, type=float)
parser.add_argument('--n-steps-update', default=200, type=int)
parser.add_argument('--clip-grad-norm', default=50, type=float)
parser.add_argument('--c', default=11, type=int)
parser.add_argument('--timesteps', default=20000000, type=int)
args = parser.parse_args()
print(args)
device = 'cpu'
c = args.c
gamma = args.gamma
n_steps_update = args.n_steps_update
e_coef = args.e_coef
clip_grad_norm = args.clip_grad_norm
env = gym.make('MinecartDeterministic-v0')
env = TimeLimit(env, 1000)
env = OneOre(env)
env = PixelMinecart(env)
env = Rescale42x42(env)
env = NormalizedEnv(env)
env = History(env, history=2)
nS = env.observation_space.shape
actor = Actor(nS, env.action_space.n).to(device)
critic = Critic(actor, c=c, nO=np.prod(env.reward_space.shape)).to(device)
logdir = f'runs/minecart_contract_pixel/head_20-20/history_2/mocac/c_{c}/gamma_{gamma}/lr_{args.lr}/e_coef_{e_coef}/n_steps_update_{n_steps_update}/clip_grad_norm_{clip_grad_norm}/'
logdir += datetime.now().strftime('%Y-%m-%d_%H-%M-%S_') + str(uuid.uuid4())[:4] + '/'
agent = MOCAC(
env,
Categorical(),
Memory(device=device),
actor,
critic,
gamma=gamma,
lr=args.lr,
logdir=logdir,
e_coef=e_coef,
n_steps_update=n_steps_update,
# scheduler='linear',
# scheduler_steps=args.timesteps//n_steps_update,
clip_grad_norm=clip_grad_norm,
c=c,
v_min=[0, -4.],
v_max=[1.5, 0.],
utility=utility_contract_2d
)
agent.train(timesteps=args.timesteps)